XTuner微调个人小助手认知

一、准备工作

1.准备开发机

2.创建虚拟环境

# 创建虚拟环境
conda create -n xtuner0121 python=3.10 -y

# 激活虚拟环境(注意:后续的所有操作都需要在这个虚拟环境中进行)
conda activate xtuner0121

# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
pip install transformers==4.39.3
pip install streamlit==1.36.0

3.安装 XTuner

# 创建一个目录,用来存放源代码
mkdir -p /root/InternLM/code

cd /root/InternLM/code

git clone -b v0.1.21  https://github.com/InternLM/XTuner /root/InternLM/code/XTuner

进入源码目录,执行安装

# 进入到源码目录
cd /root/InternLM/code/XTuner
conda activate xtuner0121

# 执行安装
pip install -e '.[deepspeed]'
#镜像加速版
pip install -e '.[deepspeed]' -i https://mirrors.aliyun.com/pypi/simple/

速度较慢,耐心等待

验证一下安装结果

xtuner version

 

查看相关的帮助

xtuner help

4.模型准备

通过以下代码一键通过符号链接的方式链接到模型文件,这样既节省了空间,也便于管理

# 创建一个目录,用来存放微调的所有资料,后续的所有操作都在该路径中进行
mkdir -p /root/InternLM/XTuner

cd /root/InternLM/XTuner

mkdir -p Shanghai_AI_Laboratory

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b Shanghai_AI_Laboratory/internlm2-chat-1_8b

执行上述操作后,Shanghai_AI_Laboratory/internlm2-chat-1_8b 将直接成为一个符号链接,这个链接指向 /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b 的位置。

这意味着,当我们访问 Shanghai_AI_Laboratory/internlm2-chat-1_8b 时,实际上就是在访问 /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b 目录下的内容。通过这种方式,我们无需复制任何数据,就可以直接利用现有的模型文件进行后续的微调操作,从而节省存储空间并简化文件管理。

模型文件准备好后,我们可以使用tree命令来观察目录结构。

apt-get install -y tree

tree -l

在目录结构中可以看出,internlm2-chat-1_8b 是一个符号链接

二、快速开始

这里我们用 internlm2-chat-1_8b 模型,通过 QLoRA 的方式来微调一个自己的小助手认知作为案例来进行演示

1.微调前的模型对话

准备一个Streamlit程序的脚本

新建文件xtuner_streamlit_demo.py

import copy
import warnings
from dataclasses import asdict, dataclass
from typing import Callable, List, Optional

import streamlit as st
import torch
from torch import nn
from transformers.generation.utils import (LogitsProcessorList,
                                           StoppingCriteriaList)
from transformers.utils import logging

from transformers import AutoTokenizer, AutoModelForCausalLM  # isort: skip

logger = logging.get_logger(__name__)


model_name_or_path = "/root/InternLM/XTuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b"

@dataclass
class GenerationConfig:
    # this config is used for chat to provide more diversity
    max_length: int = 2048
    top_p: float = 0.75
    temperature: float = 0.1
    do_sample: bool = True
    repetition_penalty: float = 1.000


@torch.inference_mode()
def generate_interactive(
    model,
    tokenizer,
    prompt,
    generation_config: Optional[GenerationConfig] = None,
    logits_processor: Optional[LogitsProcessorList] = None,
    stopping_criteria: Optional[StoppingCriteriaList] = None,
    prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor],
                                                List[int]]] = None,
    additional_eos_token_id: Optional[int] = None,
    **kwargs,
):
    inputs = tokenizer([prompt], padding=True, return_tensors='pt')
    input_length = len(inputs['input_ids'][0])
    for k, v in inputs.items():
        inputs[k] = v.cuda()
    input_ids = inputs['input_ids']
    _, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
    if generation_config is None:
        generation_config = model.generation_config
    generation_config = copy.deepcopy(generation_config)
    model_kwargs = generation_config.update(**kwargs)
    bos_token_id, eos_token_id = (  # noqa: F841  # pylint: disable=W0612
        generation_config.bos_token_id,
        generation_config.eos_token_id,
    )
    if isinstance(eos_token_id, int):
        eos_token_id = [eos_token_id]
    if additional_eos_token_id is not None:
        eos_token_id.append(additional_eos_token_id)
    has_default_max_length = kwargs.get(
        'max_length') is None and generation_config.max_length is not None
    if has_default_max_length and generation_config.max_new_tokens is None:
        warnings.warn(
            f"Using 'max_length''s default ({repr(generation_config.max_length)}) \
                to control the generation length. "
            'This behaviour is deprecated and will be removed from the \
                config in v5 of Transformers -- we'
            ' recommend using `max_new_tokens` to control the maximum \
                length of the generation.',
            UserWarning,
        )
    elif generation_config.max_new_tokens is not None:
        generation_config.max_length = generation_config.max_new_tokens + \
            input_ids_seq_length
        if not has_default_max_length:
            logger.warn(  # pylint: disable=W4902
                f"Both 'max_new_tokens' (={generation_config.max_new_tokens}) "
                f"and 'max_length'(={generation_config.max_length}) seem to "
                "have been set. 'max_new_tokens' will take precedence. "
                'Please refer to the documentation for more information. '
                '(https://huggingface.co/docs/transformers/main/'
                'en/main_classes/text_generation)',
                UserWarning,
            )

    if input_ids_seq_length >= generation_config.max_length:
        input_ids_string = 'input_ids'
        logger.warning(
            f"Input length of {input_ids_string} is {input_ids_seq_length}, "
            f"but 'max_length' is set to {generation_config.max_length}. "
            'This can lead to unexpected behavior. You should consider'
            " increasing 'max_new_tokens'.")

    # 2. Set generation parameters if not already defined
    logits_processor = logits_processor if logits_processor is not None \
        else LogitsProcessorList()
    stopping_criteria = stopping_criteria if stopping_criteria is not None \
        else StoppingCriteriaList()

    logits_processor = model._get_logits_processor(
        generation_config=generation_config,
        input_ids_seq_length=input_ids_seq_length,
        encoder_input_ids=input_ids,
        prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
        logits_processor=logits_processor,
    )

    stopping_criteria = model._get_stopping_criteria(
        generation_config=generation_config,
        stopping_criteria=st
### 使用 XTuner 进行大模型微调的方法教程 #### 1. 构建数据集 为了使模型能够学习特定的任务或行为,首先需要准备高质量的数据集。根据需求,可以创建一个对话形式的数据集,其中包含提问和对应的理想回答。这些数据将用于指导模型的学习方向[^1]。 ```bash # 数据集应保存为 JSONL 文件格式,每条记录是一个独立的对话样本。 { "instruction": "解释什么是机器学习", "input": "", "output": "机器学习是一种通过算法让计算机从经验中自动改进的技术..." } ``` #### 2. 配置文件编写 XTuner 的配置文件定义了训练的具体参数以及使用的模型架构等信息。以 `internlm_chat_7b` 模型为例,可以通过修改现有的 `.py` 配置模板来适配自己的任务场景[^3]。 以下是简化版配置文件的一个片段: ```python from xtuner.engine import Config model = dict( type='InternLM', version='chat-7b' ) train_dataset_type = 'CustomDataset' data_root = '/path/to/dataset' max_epochs = 3 per_device_train_batch_size = 4 gradient_accumulation_steps = 8 learning_rate = 5e-5 weight_decay = 0.01 warmup_ratio = 0.05 lr_scheduler_type = 'cosine' logging_dir = './logs' save_total_limit = 3 checkpointing_steps = 1000 fp16 = True bf16 = False deepspeed_config_path = "/root/deepspeed_zero2.json" work_dir = "./work_dirs/assistTuner" cfg = Config(locals()) ``` #### 3. 开始微调过程 利用 XTuner 提供的命令行工具可以直接运行指定配置下的微调流程。下面展示了一个典型的执行指令案例: ```bash xtuner train ./config/internlm2_5_chat_7b_qlora_alpaca_e3_copy.py \ --deepspeed deepspeed_zero2 \ --work-dir ./work_dirs/assistTuner ``` 此命令会加载预设好的超参设置并基于 DeepSpeed 技术加速计算效率,在工作目录下逐步存储中间结果与最终完成后的权重文件。 #### 4. 转换至 Hugging Face 格式 当微调完成后如果希望分享成果或者进一步部署应用,则可能需要用到标准框架支持的形式。XTuner 支持把内部生成的结果导出成兼容 Hugging Face Transformers 库的标准结构化存档[^2]。 转换操作如下所示: ```bash xtuner convert-to-hf-model \ ./work_dirs/assistTuner/best_model.pth \ /root/output/huggingface_model/ ``` 这样就可以轻松地与其他依赖该生态系统的项目集成起来了。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值