什么是BN(Batch Normalization)

什么是BN(Batch Normalization)?

在之前看的深度学习的期刊里,讲到了BN,故对BN做一个详细的了解。在网上查阅了许多资料,终于有一丝明白。

什么是BN?

2015年的论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》阐述了BN算法,很多论文都会引用这个算法,BN大量被用于网络训练,可见其强大。

有很多文章已经对BN的公式和流程都做了非常详细的介绍。
http://blog.csdn.net/hjimce/article/details/50866313

这里主要一些我觉得我迟迟不能理解的地方做一些记录。

1 BN 概述

对于BN来说我最开始的疑问就是,BN是什么?BN有什么用?BN放在网络模型的哪个位置?BN的作用是如何体现的?
1.1BN是什么?

就像激活函数层、卷积层、全连接层、池化层一样,BN也属于网络的一层。BN大的来说就是归一化层代替掉了LRN ( Local Response Normalization) 局部响应归一化层。详细解释可看

https://blog.csdn.net/u014296502/article/details/78839881

1.2BN有什么用?

对于之前的归一化来说,我们强行把特征做的均值为0,标准差为1࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值