• 博客(42)
  • 资源 (3)
  • 收藏
  • 关注

原创 从底层到应用:犀牛派 A1 开发指南(一)--系统搭建

犀牛派A1开发板使用指南摘要:本文介绍犀牛派A1开发板的硬件连接、软件配置及无线网络设置方法。硬件需准备Windows电脑、Type-C数据线及12V3A电源适配器。软件配置包括安装USB驱动、ADB工具及QtScrcpy拷屏工具,需配置环境变量并验证连接。通过AidLux Web桌面可实现远程访问、应用管理及编程开发,支持多设备访问。无线网络需在Android设置中连接WiFi,确保电脑与开发板处于同一局域网,使用"aidlux"作为登录密码。

2025-08-04 17:39:14 640

原创 不止性价比!犀牛派 A1 核心技术揭秘:处理器、接口与开源生态全解析

犀牛派A1边缘计算开发板基于高通QCS6490平台,具备12TOPS AI算力、多接口配置及开箱即用的场景化算法,为机器人应用提供高效开发支持。其核心优势包括:7nm工艺芯片、8GB内存+128GB存储、4K视频编解码能力,以及丰富的传感器接口。在家庭服务、工业巡检和教育科研领域展现出色适配性,支持本地化AI处理、多模态交互和低成本开发。该开发板通过预置优化模型和完整工具链,显著降低边缘智能应用开发门槛,推动端侧智能技术普及。

2025-08-04 17:23:26 1127

原创 高通QCS6490部署YOLO-NAS模型与性能测试

本文介绍了高通QCS6490处理器与YOLO-NAS算法在边缘计算中的应用。QCS6490采用8核Kryo670 CPU架构,集成Adreno643 GPU和高效AI引擎,支持12TOPS算力。文章详细展示了如何将YOLO-NAS模型转换为onnx格式,并通过AIMO平台优化为QCS6490可运行的模型。测试代码提供了完整的图像预处理、后处理及结果可视化流程,包括目标检测、置信度过滤和NMS处理。该方案在自动驾驶、安防监控和智能机器人等场景中具有应用潜力,通过硬件加速实现高效实时目标检测。

2025-07-24 09:15:36 781

原创 高通 QCS6490 平台上 YOLO 全系列模型性能深度评测

高通QCS6490平台YOLO全系列模型性能测试研究 摘要:本文针对高通QCS6490边缘计算平台与YOLO目标检测模型的结合应用展开深入研究。QCS6490采用6nm制程工艺,集成八核Kryo670 CPU和第6代AI引擎,具备12TOPS算力。研究测试了从YOLOv5到YOLOv11等全系列模型在该平台上的性能表现,包括CPU、NPU不同精度模式下的推理速度(FPS)和延迟。测试结果显示,YOLOv11n在NPU INT8模式下达到502.51FPS,YOLOv5x在CPU FP32模式下仅0.16FP

2025-07-24 09:15:12 1131

原创 高通 QCS6490 平台上 YOLOv6 系列模型的性能测试

高通QCS6490平台与YOLOv6模型性能测试报告 本报告分析了高通QCS6490边缘计算平台与YOLOv6目标检测模型的结合性能。QCS6490集成8核Kryo670 CPU、Adreno643 GPU和第6代AI Engine,AI算力达12TOPS,支持4K视频编解码和企业级Wi-Fi6。YOLOv6系列采用EfficientRep骨干网和Rep-PAN颈部结构优化,YOLOv6-N在COCO数据集上达到1234FPS/35.9%AP。

2025-07-23 09:06:15 898

原创 高通 QCS6490 平台上 YOLOv7 系列模型的性能测试

高通QCS6490处理器与YOLOv7模型性能测试分析 摘要:本文探讨了高通QCS6490处理器与YOLOv7目标检测模型的结合应用。QCS6490采用8核Kryo670 CPU架构,支持12TOPS AI算力,搭配企业级Wi-Fi6/6E,适用于边缘计算场景。测试显示,YOLOv7在QCS6490平台上表现出色:CPU模式下处理640x640图像耗时1970.48ms(0.51FPS),NPU加速后提升至22.92ms(43.63FPS)。

2025-07-23 09:05:54 838

原创 高通 QCS6490 平台上 YOLOv11-pose 系列模型的性能测试

本文探讨了人体姿态估计技术在边缘计算设备上的部署方案,重点研究了YOLOv11-pose模型与高通QCS6490平台的适配性能。QCS6490平台采用异构计算架构,集成CPU、GPU和DSP,为AI推理提供每秒超过1万亿次的运算能力。文章详细介绍了将YOLOv11-pose模型从PyTorch格式转换为高通NPU可执行格式的全流程,包括模型转换、优化和量化步骤。测试结果显示,在640×640分辨率下,YOLOv11n-pose模型在QCS6490上实现262.1FPS的推理速度,展示了该平台在实时人体姿态估

2025-07-22 09:46:04 1152

原创 高通 QCS6490 平台上 YOLO11-obb 系列模型的性能测试

摘要:本文介绍了高通QCS6490处理器与YOLOv11-obb模型在无人机视觉检测中的协同应用。QCS6490采用7nm工艺,集成8核CPU、Adreno643 GPU和第6代AI引擎,AI性能达12TOPS,支持4K视频处理和Wi-Fi6E连接。YOLOv11-obb模型通过旋转角度参数提升定向目标检测精度,特别适合无人机巡检、农业监测等场景。测试数据显示,在QCS6490平台上,YOLOv11n-obb模型NPU推理速度达222FPS(INT8)。文章详细提供了从PT模型转换到ONNX,再通过AIMO

2025-07-22 09:45:46 906

原创 高通 QCS6490 平台上 YOLOv11-cls 系列模型的性能测试

摘要:本文详细介绍了在高通QCS6490处理器上部署YOLOv11-cls系列模型的完整流程。QCS6490采用8核Kryo670架构,集成第6代AI引擎,支持12TOPS算力。文章首先对比了不同YOLOv11-cls模型在CPU/NPU上的性能表现,其中YOLO11n-cls在NPU上达到165.84FPS。随后分步讲解了模型转换方法:从PT格式到ONNX格式转换,再通过AIMO平台优化为QNN231格式。最后提供了完整的测试代码,包含模型加载、图像预处理、推理执行及结果可视化功能,为边缘计算场景下的视觉

2025-07-20 11:01:18 1056

原创 高通 QCS6490 平台上 YOLOv10 系列模型的性能测试

高通QCS6490平台与YOLOv10模型的性能优化研究 本文研究了边缘计算平台高通QCS6490与YOLOv10目标检测模型的协同性能。QCS6490采用6nm工艺,集成八核CPU和第六代AI引擎,提供12TOPS算力,支持多摄像头并发处理。研究测试了YOLOv10系列模型在QCS6490上的表现,结果显示YOLOv10n在NPU加速下可达180FPS,而YOLOv10x为25.97FPS。文章详细介绍了pt到onnx的模型转换方法,以及使用AIMO平台优化为QNN格式的流程。实验结果表明,该硬件平台与高

2025-07-19 10:36:23 949

原创 高通 QCS6490 平台上 YOLOv11 系列模型的性能测试

在边缘计算与 AI 深度融合的时代,硬件平台的算力释放与模型部署效率正成为技术落地的关键支点。高通 QCS8550 作为集成 48TOPS AI 算力的旗舰级芯片,其 4nm 制程工艺与 Hexagon 神经网络处理单元,为轻量化 AI 模型推理提供了强大的硬件基底。当 YOLO 系列迭代至 V11 版本,其在目标检测精度与实时性上的突破,与 QCS8550 的异构计算能力形成了天然适配。

2025-07-19 10:33:33 990

原创 高通 QCS6490 平台上 YOLOv5 系列模型的性能测试

本文聚焦高通 QC6490 平台与 YOLOv5 系列模型的融合应用。QC6490 平台凭借 6nm 制程、八核 Kryo 670 CPU、12 TOPS 算力的第 6 代 AI Engine 及 Wi-Fi 6/6E 等优势,在机器人、无人机等领域表现卓越。YOLOv5 系列模型以高效架构实现精准目标检测,广泛应用于多行业。文章通过测试两者结合的性能,分析不同 YOLOv5 版本在该平台的运行效率,为边缘设备部署智能视觉应用提供数据参考与技术指导,推动智能物联网发展。

2025-07-14 13:29:03 809

原创 高通 QCS6490 平台上 YOLOv8 系列模型的性能测试

Wi-Fi 6/6E 等优势,在机器人(服务与工业场景)、无人机(巡检、植保等)领域表现突出。YOLOv8 通过架构优化,在检测精度与速度上实现突破,支持多任务及多尺度模型。文章测试二者结合性能,分析不同 YOLOv8 模型在该平台的推理速度、精度及资源占用,为边缘智能设备的模型选型与部署优化提供数据支撑,推动视觉 AI 在相关场景的落地。

2025-07-14 13:28:36 892

原创 高通跃龙IoT-Q系列芯片深度解析:定位、特性与应用全景

高通推出全新品牌跃龙(Dragonwing),与现有骁龙品牌形成双线布局。骁龙面向消费级市场,主要应用于智能手机等终端设备;跃龙则聚焦工业和企业级市场,涵盖工业机器人、无人机、智能摄像头等领域。跃龙系列产品强调边缘AI能力、高性能计算和卓越连接性,目前已推出QCS/QCM等多个系列处理器,采用4nm/6nm工艺,支持Wi-Fi7/6E和5G连接,AI算力最高达48TOPS。该系列提供长期产品支持(至2030-2033年),适用于工业自动化、智能零售等多种场景.

2025-07-10 18:32:27 1021 2

原创 高通跃龙IoT-IQ系列芯片深度解析:定位、特性与应用全景

高通公司推出全新产品品牌跃龙(Dragonwing),与现有的骁龙系列形成双龙齐飞格局。跃龙系列专注于工业及嵌入式物联网、网络和蜂窝基础设施等领域,与面向消费级设备的骁龙系列形成差异化布局。该系列产品包括IQ、Q等多个芯片系列,具备强大的AI能力(最高100TOPS)、高性能计算(八核CPU)、出色的连接性(Wi-Fi7)以及工业级可靠性(-40℃至+125℃宽温范围),适用于工业机器人、智能摄像头、无人机等多种工业设备。

2025-07-10 18:32:25 992

原创 高通 QCS6490PI 集群架构支撑 DeepSeek 模型稳定运行的技术实现

摘要:distributed-llama项目通过分布式架构实现轻量化设备协同运行大语言模型,突破单机性能限制。该项目支持Linux/macOS/Windows系统,优化ARM CPU,可运行Llama系列及DeepSeek等模型。采用主从节点架构,主节点负责模型加载与权重分发,从节点处理神经网络切片。部署时需在多个设备上编译项目,下载模型参数,并按2的幂次方配置节点数。通过以太网连接实现多设备协同推理,显著提升大模型运行效率。

2025-07-09 15:22:36 844

原创 高通QCS8550 AI 模型性能全解析:YOLO系列Benchmark

本文聚焦高通QCS8550处理器部署YOLO系列目标检测模型的性能表现。测试数据显示,在640×640分辨率下,YOLOv5到YOLOv11各版本模型在CPU、NPU(QNN2.31)不同精度(FP32/FP16/INT8)中的推理速度差异显著,其中YOLOv6n在INT8精度下达到740.45FPS的最高帧率。特别地,YOLOv11系列展现出均衡的性能,如YOLO11n在INT8模式下实现502.51FPS。文章还涵盖分割、分类、姿态估计等扩展任务的基准测试,为边缘AI部署提供重要参考。相关测试代码已公开

2025-07-09 14:08:18 1080

原创 高通QCS8550部署YOLO11-seg模型与性能测试

本文聚焦高通 QCS8550 处理器部署 YOLO11-seg 模型的研究与测试。QCS8550 作为物联网旗舰处理器,以 4 纳米工艺实现 48TOPS 边缘 AI 性能,搭载先进 CPU、GPU 及连接技术,适配高要求 IoT 场景;YOLO11-seg 专注实例分割,在安防、工业检测等领域作用关键。研究旨在探索二者结合的高效运行方式,为相关应用落地及边缘 AI 发展提供技术支撑与实践参考。

2025-07-08 15:30:46 964

原创 高通QCS8550部署YOLO11-obb分类模型与性能测试

本文研究了在高通QCS8550处理器上部署YOLO11-obb定向目标分类模型的性能表现。QCS8550采用4nm工艺,提供48TOPS的AI算力,CPU性能提升1.5倍,GPU性能提升3倍。测试显示,YOLO11系列模型在NPU上运行效率显著提升,其中YOLO11n-obb在INT8量化下达到564.97FPS。研究详细介绍了从pt模型到onnx转换,再到AIMO平台优化为NPU可执行格式的全流程,并提供了不同模型尺寸的性能对比数据,为边缘智能设备的高效目标检测提供了实践参考。

2025-07-08 15:29:39 923

原创 高通QCS8550部署YOLO11-pose模型与性能测试

高通QCS8550平台成功部署YOLO11-pose模型 摘要:本文详细介绍了在高通QCS8550硬件平台上部署YOLO11-pose姿态估计模型的全过程。QCS8550采用4nm工艺,配备八核CPU和48TOPS AI算力,为模型部署提供强大硬件支持。通过AIMO平台将ONNX模型转换为高通NPU专用格式,实现了INT8量化优化。测试显示,YOLO11n-pose模型在QCS8550上推理速度达497.51FPS(INT8精度),性能显著提升。文章还提供了完整的代码实现,包括模型转换、推理流程及可视化方法

2025-07-04 12:04:34 946

原创 高通QCS8550部署YOLO11-cls模型与性能测试

高通骁龙QCS8550处理器与YOLOv11模型优化测试 摘要:本文展示了基于高通QCS8550处理器(4nm工艺,48TOPS AI算力)的YOLOv11-cls系列模型优化测试。通过AIMO平台将ONNX模型转换为QNN2.31格式,在NPU加速下实现高效推理:YOLOv11n-cls INT8模型达310.56FPS,比CPU快38倍。测试包含完整的模型转换流程(PT→ONNX→QNN)及推理代码实现,验证了该硬件平台在边缘AI场景的卓越性能,为工业机器人、智能安防等IoT应用提供了高效的解决方案。

2025-07-04 12:03:08 1061

原创 高通QCS8550部署YOLO-NAS模型与性能测试

高通QCS8550平台部署YOLO-NAS边缘目标检测方案测试表明:通过AIMO工具链将YOLO-NAS模型转换为NPU专用格式后,在QCS8550的QNN2.31 NPU上实现高效推理。YOLO-NAS-s模型在INT8量化下达到305.81FPS,较CPU提升182倍,延迟仅3.27ms;YOLO-NAS-l模型也实现180.51FPS,验证了该方案在边缘设备上的实时性优势。完整技术路径包含模型格式转换(PT→ONNX→NPU)、量化优化及版本匹配等关键环节,为边缘AI应用提供了高吞吐、低延迟的部署。

2025-07-03 22:05:18 1064

原创 高通QCS8550部署Yolov10模型与性能测试

本文聚焦于在高通骁龙 QCS8550 边缘计算设备上部署 YOLOv10 目标检测模型的全过程及性能测试。通过将 YOLOv10 的 pt 模型转换为 ONNX 格式,再利用 AIMO 平台转换为 QCS8550 NPU 支持的 QNN2.31 格式,最终在设备上实现推理。测试结果显示,INT8 量化后的 YOLOv10 模型在 QCS8550 的 NPU 上性能优异,其中 YOLOv10n_int8 模型推理速度达 346.02 FPS,远高于 CPU 的 6.40 FPS。研究验证了二者结合在实时视觉分

2025-07-03 21:36:17 659 5

原创 深度解析 QCS6490:硬件性能全揭秘

高通QCS6490处理器专为高性能边缘计算设计,采用8核Kryo670 CPU架构,包含4个2.7GHz Cortex-A78核心和4个1.9GHz Cortex-A55核心,搭配Adreno643 GPU和12TOPS AI引擎。支持3路摄像头并发处理、4K视频编解码及Wi-Fi6E多千兆连接,实测GeekBench5多核成绩突破3000分,3DMark图形测试达2500分。应用场景覆盖智能物流、工业检测及体育直播等领域,通过AidLux软硬件协同优化实现卓越的性能功耗比。

2025-07-02 16:39:35 1534

原创 QCS8550 硬件性能全解析:参数、性能、优化,一篇讲透

高通推出QCS8550旗舰IoT处理器,采用4nm工艺和异构计算架构,集成高性能CPU、740 GPU及AI加速单元,支持8K视频编解码和Wi-Fi7连接。该芯片针对工业无人机、智能相机等高性能物联网场景优化,具备300K DMIPS CPU算力、48TOPS AI算力,同时通过能效控制和长周期支持降低开发成本。其多核调度、高带宽内存和专用视觉处理单元,可满足复杂环境下的实时AI推理、高帧率视频处理等需求,成为高性能IoT设备的理想解决方案。

2025-07-02 15:54:29 1212

原创 高通QCS8550开发板 + DeepSeek-R1:打造智能化商场导购实践

本文介绍了基于高通QCS8550开发板和DeepSeek-R1-Distill-Llama-8B模型的商场智能导购解决方案。QCS8550采用4纳米工艺,具备强大AI算力(48TOPS)和8K视频处理能力,为导购系统提供硬件支持。通过AidLux平台搭建Dify开发环境,部署轻量化的DeepSeek-R1语言模型(8B参数),实现了商场店铺信息的智能查询功能。该系统可在本机通过API调用,准确检索商场店铺数据并快速响应,展示了边缘计算在零售场景中的应用潜力。测试结果表明,方案在保持精度的同时提升了响应速度,

2025-06-27 16:04:51 894

原创 高通 QCS8550 大模型性能深度解析:从算力基准到场景实测的全维度 Benchmark

高通QCS8550芯片赋能大模型端侧部署:性能实测与行业应用在AI大模型时代,高通QCS8550旗舰计算平台凭借48TOPS算力和第七代AI引擎,为端侧大模型部署提供强力支持。测试数据显示,该芯片在运行Gemma-2B、Qwen等主流LLM时,首字响应最快可达0.03秒,解码速度最高达110token/s,显著优于同级别方案。通过异构架构优化,其功耗降低30%,使7B参数模型能在本地流畅运行。从智能家居到车载系统,解决了大模型在实时性、精度与能效上的关键挑战,为行业智能化落地提供了可靠算力底座。

2025-06-27 16:04:40 1578

原创 高通手机跑AI系列之——穿衣试装算法

本文介绍了一个基于计算机视觉的实时人脸变换试衣应用。该系统在Redmi K60 Pro手机上运行,采用AidLux 2.0作为开发环境。核心功能包括人脸检测、关键点定位和人脸变换三个模块:1)使用BlazeFace算法进行人脸检测;2)通过face_landmark模型提取468个精确人脸关键点;3)基于Delaunay三角剖分和仿射变换实现人脸变形与融合。系统采用aidlite推理引擎优化模型性能,并提供了图形化交互界面。该应用展示了边缘设备上实时计算机视觉技术的实现方案,适用于教育、娱乐等场景。

2025-06-26 15:33:58 1029

原创 高通QCS8550开发板 + DeepSeek-R1:本地构建 AI 驱动的商品知识库与智能售前助手实践

本文介绍了基于高通QCS8550开发板和AidLux平台构建智能售前助手的全流程方案。通过知识蒸馏技术将DeepSeek-R1大模型压缩为8B参数的Llama架构模型,结合AidLux平台的AI加速能力,实现了边缘设备上的高效部署。具体步骤包括:1)环境准备与Dify平台配置;2)模型下载与API服务启动;3)模型集成与知识库构建。测试结果表明,该系统能准确回答商品价格、口味等咨询,并实现自动计价功能。该方案显著提升了客服响应速度,在边缘计算场景下保持低延迟和低功耗优势。

2025-06-26 10:58:27 870

原创 高通手机跑AI系列之——人脸变化算法

基于AidLux的实时人脸变换系统实现 本文介绍了一个在Redmi K60 Pro手机(搭载骁龙8 Gen2处理器)上运行的实时人脸变换系统。系统通过AidLux 2.0(Ubuntu 20.04环境)部署,使用BlazeFace和FaceLandmark两个轻量级TFLite模型实现人脸检测和468个关键点定位。核心算法包括:Delaunay三角剖分进行人脸对齐、仿射变换实现人脸扭曲、以及无缝克隆技术完成图像融合。系统提供图形界面支持8种预设人脸切换,处理速度达实时帧率。代码展示了完整的计算机视觉处理流程

2025-06-25 14:28:49 1000

原创 高通QCS8550部署Yolov5模型与性能测试

本文聚焦 YOLOv5 在高通 QCS8550 平台的应用场景与性能表现。首先阐述 YOLOv5 作为高效目标检测算法,适配 QCS8550 的算力特性,可应用于智能安防的实时监控、自动驾驶的环境感知、工业质检的缺陷识别等边缘计算场景。同时给出具体性能参数,包括在典型输入分辨率下的推理速度、准确率及功耗数据,展现其在移动设备与边缘终端中平衡检测精度和实时性的优势,为相关领域技术落地提供参考。

2025-06-25 10:21:20 1088

原创 高通手机跑AI系列之——3D姿势估计

本文介绍了一个基于AidLite框架的3D椅子检测应用实现方案。该方案使用Redmi K60 Pro手机(搭载骁龙8 Gen2处理器)作为硬件平台,通过AidLux 2.0软件运行Ubuntu 20.04系统环境。核心代码实现了以下功能:1)加载TFLite格式的3D检测模型;2)自动检测并连接USB/MIPI摄像头;3)利用GPU加速进行实时推理;4)在原始图像上绘制3D椅子的关键点和连接线框。

2025-06-20 16:40:52 528

原创 AidLux 高通手机端开发指南:Python 编程 + AI 部署 + 跨平台实战全解析

AidLux手机端Python开发指南AidLux是一款基于ARM架构的跨平台(Android/Linux)AIOT开发工具,支持在手机上运行完整的Linux环境。妥妥学习Python,Linux,AI开发的便捷工具。

2025-06-20 16:22:02 1629

原创 高通 QCS8550 平台部署:Qwen2.5-7B 大模型与 Agent+RAG 技术的融合

本文探讨了在高通QCS8550计算平台上部署Qwen2.5-7B大语言模型与AIAgent+RAG技术的实践方案。Qwen2.5-7B是阿里云开源的76亿参数语言模型,具备128K长文本处理和29种语言支持能力。AIAgent通过整合大模型、工具调用和规划推理,实现了从被动响应到主动任务执行的转变。文章详细介绍了技术背景、核心架构以及从环境搭建到API服务启动的部署步骤。这一融合方案展现了边缘计算环境中大模型与智能体技术的落地潜力,为医疗、金融等领域的复杂任务处理提供了新思路。

2025-06-18 15:47:22 1106

原创 高通 QCS8550 与Dify协同:边缘端本地知识库构建与 RAG 优化实践

本文探讨如何利用高通QCS8550边缘计算平台与Dify开源LLM开发平台构建本地化知识服务体系。方案通过RAG(检索增强生成)技术,将实时检索与语言模型生成能力结合,解决传统大模型的知识时效性与存储局限问题。实施步骤包括:1)硬件环境搭建;2)Dify平台可视化部署;3)火山引擎配置接入;4)RAG工作流优化。该方案实现了边缘算力高效利用(QCS8550多核处理)、数据本地化安全合规,并支持低代码开发企业级AI应用(如智能客服、专业问答),为边缘AI落地提供了"硬件+算法+平台"的完整解决方案。

2025-06-18 14:49:29 1036

原创 高通手机跑AI系列之——人像与背景分割

本文介绍了一个基于深度学习的实时人像分割应用,使用Redmi K60 Pro手机(搭载骁龙8 Gen2处理器)在AidLux 2.0(Ubuntu 20.04)环境下运行。该系统通过OpenCV捕获视频流,利用Aidlite轻量级推理引擎运行人像分割模型(513×513输入),实时识别人物并生成蓝色半透明轮廓效果。代码包含完整的预处理、模型推理(GPU加速)、后处理及性能监控(显示FPS和推理耗时)流程,适用于视频会议、直播特效等场景。关键步骤包括摄像头初始化、图像处理、模型加载与推理,以及结果融合显示。

2025-06-16 15:26:20 1175

原创 高通手机跑AI系列之——手部姿势跟踪

摘要:在Redmi K60 Pro手机上运行的手部检测系统,采用了第二代骁龙8处理器和AidLux 2.0平台。系统通过两个协同工作的AI模型(palm_detection.tflite和hand_landmark.tflite)实现实时手部追踪,分别使用GPU和CPU加速。系统功能包括:1)检测手掌位置并绘制边界框;2)识别21个手部关键点;3)计算手掌重心;4)绘制手部轮廓和连接线。应用场景广泛,包括手势交互、VR/AR控制、医疗康复等。

2025-06-16 14:42:26 911

原创 高通手机跑AI系列之——实时头发识别

摘要:基于Redmi K60 Pro手机(骁龙8 Gen2处理器)开发的实时人物分割系统,采用AidLux 2.0(Ubuntu 20.04)环境运行。实现60ms级单帧处理速度。核心功能包括:USB/内置摄像头自适应切换、RGB图像预处理、双输出通道(前景/背景概率图)推理、基于OpenCV的掩码合成。典型应用场景含视频会议虚拟背景、AR试衣等。

2025-06-14 12:02:30 783

原创 高通手机跑AI系列之——姿态识别

本文介绍了一个基于高通8gen2手机的实时人体姿态检测系统。该系统采用双模型级联架构,使用pose_detection.tflite进行人体检测(CPU加速)和pose_landmark_upper_body.tflite进行关键点识别(GPU加速)。系统运行于AidLux 2.0环境,支持自适应摄像头选择、图像预处理优化和多线程加速,可实时检测22个上半身关键点并形成姿态骨架。通过详细的Python代码实现,展示了从图像采集、模型推理到结果可视化的完整流程,适用于健身指导、动作分析等应用场景。

2025-06-13 18:27:50 940

原创 高通手机跑AI系列之——468个面部关键点提取

本文介绍了一个基于深度学习的实时人脸检测与面部关键点识别系统。该系统采用高通8gen2芯片的手机作为硬件平台,使用双模型架构:BlazeFace轻量级人脸检测模型(128x128输入,CPU加速)和面部关键点识别模型(192x192输入,GPU加速)。通过AidLux 2.0系统在Ubuntu环境下实现实时处理,能够准确定位468个面部关键点,包括眼睛、眉毛、嘴巴等特征。系统采用优化策略:仅在未检测到人脸时执行人脸检测,成功检测后仅处理人脸区域。算法包含图像预处理、人脸跟踪稳定性检测等功能。

2025-06-13 16:59:20 894

aidv0.87F3.apk

idLearning App在Android手机上构建了构建Android+Linux+AI共生平台,赋能智能物联网终端(AIOT)(Android+Linux+AI=AidLux) 【下载即用】 内置排名top7的深度学习框架,Caffe、Tensorflow、Mxnet、pytorch、keras、ncnn、opencv,你不再需要复杂的配置 【可视化编程】 内置的可视化编程器,可以让你在手机上用python轻松零基础编程,支持触摸拖拽式界面设计 ,支持代码实时调试和图形化运行 【海量灵感】 Aid Learning内置大量人脸识别、行为识别、物体分类、头发识别、视频人物抠像等AI源码例子程序,Type-C控制各种传感器 【随时编程】 基于云平台服务,同步您的所有代码和应用,随时在移动端和PC端学习和创作 【快速演示】 AidLearning能够在移动端随时展示您的AI应用,方便学习和交流,同时也可投影到电视机、投影仪进行大屏显示。 总之,Aid Learning打造了一个Android+Linux+AI 三合一的触摸拖拽式的快速开发和学习平台,不仅可利用手机进行碎片式编程,同时可充分利用两大主流操作系统(Android+Linux)的开发优势和手机的完美终端优势,利用这种优势,Aid Learning打造了一个完美的编程学习和开发的新平台。

2021-03-04

aid-0.86b2f2new.apk

v0.86b2f2版更新日志 1、修复ssh连接,不需任何配置直接用ssh [email protected] -p9022命令连接,密码:demo 2、内置Java(openJDK) 3、内置最新版node 12.18/npm6 4、新增X模式,可以在X模式下体验和PC上Linux一样基于图形化的开发 5、内置pygame 6、内置SDL 7、新增手机摄像头的推流模式,可参考/home/netcam.py,可以在浏览器里查看手机摄像头的视频流 8、修复xfce连接中断的问题,并加速了加载速度 9、内置chrome浏览器,修复浏览器的启动速度 10、增加摄像头推流操作类cvp,请在X模式下运行/home/test-cvp.py参考其用法

2020-08-10

Aid 桌面图标配置文件

大胆地去尝试你的创意!不让配置开发环境浪费了你的宝贵时间。AIDLearning给你提供一个即时的IDE来学习、构建和生成产品的在线编程环境。

2020-04-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除