卷积神经网络新姿势(1)——CosineConv2D(余弦卷积)

本文介绍了卷积神经网络的新方法——CosineConv2D,它通过余弦相似度取代传统的点乘操作,缓解了梯度爆炸问题并缩小了输出范围。该方法在keras社区已有初步实现,展示了其计算效率和稳定性。尽管目前仍在开发阶段,但可能成为未来CNN模块的替代选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在逛arxiv的时候,突然发现很多CNN领域的新秀,这里给大家分享一个卷积过程的小鲜肉——CosineConv2D,虽然距离论文发表已经一年多了,但是这绝对是个好东西,并且在将来在某些方面应该是慢慢把常规卷积模块给替代掉的。

先放论文地址:https://arxiv.org/pdf/1702.05870.pdf

这篇论文讲个什么呢?咱们先画重点。

 

我们常规的卷积过程,就是x矩阵跟w矩阵的一个卷积过程,说白了就是相应位置的点乘,然后求和。

在他看来,点乘的结果是“无界”的,会造成非常大的“协变量跃迁”,而cosine norm能够很大程度减小这种现象。

常规的卷积输出就是等于WX,而论文作者提出的新卷积方式是output = w·x  / (|W|*|X|) = cosθ,w是权重参数的矩阵形式(向量形式),x是计算数据的矩阵形式(向量形式),|W|指的是权重矩阵的模,|X|就是X矩阵的模,这个其实跟二维坐标系求余弦值的原理是一样的。

这样最大的好处有两点:1、炸不了了!梯度爆炸直接被消灭!2、输出结果范围收缩到0-1,方差变小了,数据因为输入的原因造成的敏感性就小了,这点其实跟BN的用途异曲同工,但不绝对。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值