PyTorch张量

一、PyTorch张量概述

PyTorch 是一个开源的机器学习库,张量(Tensor)是 PyTorch 中最基本的数据结构。张量可以看作是多维数组,它类似于 NumPy 中的 ndarray。张量可以存储数据,并且能够利用 GPU 加速计算,这是 PyTorch 在深度学习中非常重要的特性。

  • 数据类型:张量可以存储多种数据类型,如浮点数(float32、float64 等)、整数(int32、int64 等)等。例如,torch.FloatTensor 表示存储浮点数的张量。

  • 维度:张量的维度可以是任意的。一个标量(单个数值)可以看作是 0 维张量,一维张量类似于向量,二维张量类似于矩阵,而更高维度的张量可以用于表示更复杂的数据结构,比如图像数据(通常是一个 4 维张量,包括批次大小、通道数、高度和宽度)。

二、创建张量

(一)直接从数据创建

Python复制

import torch

# 创建一个一维张量
tensor_1d = torch.tensor([1, 2, 3])
print(tensor_1d)

# 创建一个二维张量
tensor_2d = torch.tensor([[1, 2], [3, 4]])
print(tensor_2d)

这种方式可以直接从 Python 列表等数据结构创建张量。PyTorch 会根据提供的数据推断出张量的数据类型和形状。

(二)使用特定函数创建

  • 全零张量

    zeros_tensor = torch.zeros(2, 3)  # 创建一个 2×3 的全零张量
    print(zeros_tensor)
  • 全一张量

    ones_tensor = tor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值