深入理解神经网络中的自适应动态规划与智能控制
1. 引言
神经网络作为一种强大的工具,在许多领域中发挥着重要作用,特别是在自适应动态规划(ADP)和智能控制方面。本文将深入探讨神经网络如何应用于这些领域,分析其背后的原理和技术细节,并通过实际案例展示其优势和潜力。
2. 神经网络基础
神经网络是由大量简单单元(神经元)组成的复杂系统,旨在模仿人脑的工作方式。每个神经元接收多个输入信号,经过加权求和并通过激活函数产生输出。典型的神经网络结构包括输入层、隐藏层和输出层。下面是一个简单的三层神经网络结构示意图:
graph LR;
A[输入层] --> B(隐藏层);
B --> C[输出层];
subgraph 输入层
A1[输入1]
A2[输入2]
A3[输入3]
end
subgraph 隐藏层
B1[神经元1]
B2[神经元2]
B3[神经元3]
end
subgraph 输出层
C1[输出1]
C2[输出2]
end
A1 --> B1
A1 --> B2
A1 --> B3
A2 --> B1
A2 --> B2
A2 --> B3
A3 --> B1
A3 --> B2
A3 --> B3
B1 --> C1
B1 --> C2