kaldi在java中运行_Kaldi 模型训练与测试流程

本文详细介绍了如何在Java环境下利用Kaldi进行模型训练与测试。首先,文章强调了需要具备Linux环境、C++基础和机器学习知识。接着,展示了Kaldi项目目录结构,包括cmd.sh、conf、data、exp、local等关键部分。然后,讨论了运行脚本、语料准备、词典准备、MFCC计算和CMVN统计等步骤。对于每个步骤,都提供了具体的脚本和命令示例,帮助读者理解Kaldi在实际操作中的流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Kaldi 模型训练与测试流程

先决条件

要学习Kaldi 有一些先决条件要具备

Linux:

Kalid本身是在Linux下开发和测试运行的,虽然官方给了在Windows下用VS编译运行的方法,但我没有成功,坑比较多,除非你对Windows VS很熟,否则建议直接在Linux下搞。

C++: Kaldi所有相关算法的实现都是用C做的,如果要用Kaldi做自己的产品,C是必须会的。

机器学习已经入门:搞Kaldi机器学习基本的东西要知道,不然,你都不知道你在干什么。

目录结构

首先介绍一下运行Kaldi项目的目录结构

|-- cmd.sh // 运行配置目录,设置Kaldi运行的环境变量,例如使用什么类型的队列

|-- conf // 配置文件目录,mfcc、等参数的配置

|-- data // Kaldi运行所产生的数据

|-- exp // Kaldi每一步训练的模型数据及测试数据

|-- local //存放run.sh 中调用的脚本工具,需要自己写

|-- mfcc // mfcc数据

|-- path.sh //将Kaldi 工具和库目录添加到PATH

|-- run.sh // top层脚本,运行该脚本训练数据和测试, 需要自己写

|-- steps // kaldi 脚本工具, 复制到工程目录下

|-- tools // kaldi 脚本工具, 复制到工程目录下

`-- utils // kaldi 脚本工具, 复制到工程目录下

运行脚本

run.sh为总的运行脚本

语料准备

要做训练首先要有语料

Kaildi默认只支持wav格式的文件,为了方便,我们将为每个wav文件建立一个相同文件名的txt文件,在其放置标记后的内容,并做分词(why?)。

开放的语料主要的thchs30和aishell<

### KaldiVosk语音识别框架比较 #### 背景介绍 Kaldi 是一个广泛使用的开源语音识别工具包,以其灵活性和强大的功能而闻名。它提供了丰富的算法实现和支持多种应用场景的需求[^1]。 Vosk 则是在 Kaldi 基础上发展起来的一个更易于集成和部署的解决方案。Vosk 提供了一个简化接口来访问基于 Kaldi模型和技术栈,特别适合于快速开发和实际产品化阶段的应用场景[^2]。 #### 功能对比 - **易用性和集成度** 对于开发者而言,Vosk 显得更加友好。通过简单的 API 就能完成从音频输入到文本输出的过程,支持 C++, Python, Java 等多种编程语言绑定,并且能够轻松嵌入到不同平台上的应用程序中去。 - **性能表现** 在处理速度方面两者都表现出色;然而当涉及到特定领域优化时(比如医疗记录、法律文档),可能还需要额外训练定制化的声学或语言模型,在这方面 Kaldi 提供了更多底层控制选项以便研究人员调整参数获得最佳效果。 - **多语言支持** Vosk 支持超过二十种不同的语言及方言版本,这使得其成为跨国界项目理想的候选者之一。相比之下,虽然 Kaldi 同样具备良好的跨语言适应能力,但是配置相应资源文件相对复杂一些。 - **社区活跃程度发展潜力** 自从发布以来,Kaldi 已经积累了庞大的用户群体并形成了成熟的生态系统。尽管如此,随着越来越多的企业和个人倾向于寻找开箱即用型方案而非深入研究内部机制,像 Vosk 这样的衍生作品正逐渐赢得市场份额和发展机遇。 ```python from vosk import Model, KaldiRecognizer import wave model = Model(lang="en-us") # 加载英语模型 wf = wave.open("test.wav", "rb") rec = KaldiRecognizer(model, wf.getframerate()) while True: data = wf.readframes(4000) if len(data) == 0: break if rec.AcceptWaveform(data): print(rec.Result()) print(rec.FinalResult()) ``` 此段代码展示了如何利用 `vosk` 库来进行基本的英文语音转文字操作。这里使用的是预训练好的 “en-us” 模型,对于其他受支持的语言也可以按照相同方式加载对应的模型文件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值