1. 问题描述
在试验测试中,为了保证测试数据的精度和可靠性,我们往往提高仪器的采样频率。例如预期测试信号的最高频率为f0,那么试验测试中,可以选择仪器支持的最高采样频率进行测试,例如取fs = 100*f0。
但是在数据处理过程中,信号过长,往往导致运算量过大,难以实施较为复杂的信号处理,例如小波变换。这种情况下,在保证信号处理结果精度的情况下,可以通过压缩采样来降低后续计算量。例如将100 Hz的信号重采样为10 Hz的信号。
2. 技术背景
采用MATLAB内置的resample函数。百度知道的解释如下:
B=resample(x,90,250); %
采样从250Hz降到90Hz,如果250在前,就是插值从90到250,可以看B的长度,250Hz采样4000个数据等于90hz采样1440个数据,这就是降采样。
resample是抽取decimate和插值interp的两个结合。具体完成如下操作,
先插值90变成 250*9Hz
然后抽取250变成速率 90Hz
3. 解决方案
根据数据处理的需求,计算需要降低采样的倍数,合理设置参数即可。
4. 实施示例
4.1 设计原始信号
%% 基本参数
N = 5; % 激励信号中心频率,Hz
A = 1; % cycle数,即激励信号波峰数
fc = 100e3; % 激励信号幅值
T0 = 1e-4; % 导波传播时间
T = 1.0*T0; % 激励持续时长
dt = 1/(20*fc)/4; % 时间步长,在最大步长基础上除以2
t = [0:dt:T-dt]'; % 时间序列
%% 信号时域波形
V = A*[heaviside(t)-heaviside(t-N/fc)].*... % 时域输入信号求解
(1-cos(2*pi*fc*t/N)).*sin(2*pi*