MTSP问题遗传算法解决及其代码与案例

本文介绍了如何运用遗传算法解决多旅行商问题(MTSP),其中每个旅行商从同一地点出发但不返回,且终点不同。遗传算法通过设置迭代次数、随机分组和基因片段修改来生成子代,寻找最小路径。文中还提供了35个城市、5个旅行商的案例,并详细解释了代码实现和变异函数。文章最后讨论了其他类型的MTSP问题,如同一起点同一终点和随机起点随机终点的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

遗传算法解决MTSP问题

个体的基因型:

基本算法:

代码及其解释

案例:

遗传算法代码:

代码结果

​ 

关于其他MTSP问题

同一起点同一终点:

随机起点随机终点


 

遗传算法解决MTSP问题

问题类型:解决所有旅行商从同一地点出发,但不回到出发点,且各旅行商的终点不同。

个体的基因型:

一个个体的基因型包含两段:

1、路径基因型

2、中断点基因型

这些意味着什么呢?假设有3个旅行商,10个城市,城市代号1为起始点,那么假设遗传算法中产生了这么一个个体,他的基因型为:

路径基因型:[2 3 5 6 7 9 10 8]

中断点基因型:[2 4]

那么,这个个体代表的信息为:

旅行商1的旅游路径:1 2 3 

旅行商2的旅游路径:1 5 6 

旅行商3的旅游路径:1 7 9 10 8 

基本算法:

1、设置5000个迭代次数,每

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhuo木鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值