tensorflow实战(一)——MNIST数据集的hello world

本文深入探讨了使用TensorFlow进行深度学习模型训练的核心概念,特别是交叉熵损失函数的实现与应用。通过MNIST手写数字识别数据集,详细介绍了如何构建、训练和评估神经网络模型,包括数据预处理、模型搭建、训练过程及性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述

这一系列文章全部参考黄文坚 的《tensorflow实战》第三章

学习

  • 交叉熵

    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
    

    reduction_indices=[0]的意思是,按行求和(列数不变,行全部加在一起)
    reduction_indices=[1]的意思是,按列求和(行数不变,列全部加在一起)

  • 输入测试数据,写法1和2等价

    # 写法1
    print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels})) 
    # 写法2
    print(sess.run(accuracy, {x: mnist.test.images, y_: mnist.test.labels}))
    

tensorflow的常见函数操作

  • 转换参数类型:tf.cast
  • 零向量:tf.zeros
  • 变量:tf.Variable
  • 矩阵乘法:tf.matmul
  • 每一列的最大值在哪一行:tf.argmax(某数组,0)
  • 每一行的最大值在哪一列:tf.argmax(某数组,1)

网络常见函数操作

  • 求和: tf.reduce_sum
  • 求平均:tf.reduce_mean
  • 是否相等:tf.equal
  • 输入数据:tf.placeholder
  • softmax:tf.nn.softmax

代码

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

print(mnist.train.images.shape, mnist.train.labels.shape)
print(mnist.test.images.shape, mnist.test.labels.shape)
print(mnist.validation.images.shape, mnist.validation.labels.shape)

import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32, [None, 784])

W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x, W) + b)

y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

tf.global_variables_initializer().run()

for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    train_step.run({x: batch_xs, y_: batch_ys})

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值