- 博客(6)
- 收藏
- 关注
原创 Sklearn 与 TensorFlow 机器学习实用指南第二版----课后习题答案--06
决策树1. 在 100 万例训练集上训练(没有限制)的决策树的近似深度是多少?包含m片叶子的完全平衡的二叉树深度等于,四舍五入。一棵二进制决策树(一棵只做二进制决策的树,就像Scikit-Learn中所有树的情况一样)将在训练结束时或多或少地得到很好的平衡,如果它被无限制地训练,每个训练实例有一片叶子。因此,如果训练集包含一百万个实例,决策树将具有的深度(实际上多一点,因为树通常不会完全平衡)。2. 节点的基尼指数比起它的父节点是更高还是更低?它是通常情况下更高/更低,还是永远更高/更低?.
2021-08-26 11:44:36
811
原创 Sklearn 与 TensorFlow 机器学习实用指南第二版----课后习题答案--05
1. 支持向量机背后的基本思想是什么支持向量机背后的基本思想是在类之间匹配尽可能宽的“街道”。换句话说,目标是在分隔两个类的决策边界和训练实例之间有最大可能的余量。左图虽然将两个样本集分离开了 但是效果容易过拟合,有图中间虚线部分即为街道,目标就是使得街道的宽度最宽当执行软边界分类时,SVM搜索在完美地分离两个类别和具有最宽的可能街道(即,一些实例可能最终在街道上)之间的折衷。软间隔和硬间隔的的区别在于是否允许误分类点在街道甚至在错误的分类存在,其中软间隔使用罚函数,惩罚系数由c决
2021-08-24 10:22:20
480
原创 Sklearn 与 TensorFlow 机器学习实用指南第二版----课后习题答案-01
Sklearn 与 TensorFlow 机器学习实用指南第二版----课后习题答案仅自用,学习笔记1.机器学习概览1. 如何定义机器学习?机器学习是关于构建可以从数据中学习的系统。学习意味着在某些任务上对于给定的指标(均方误差,召回率,准确度,等等 )变得好。2. 机器学习可以解决的四类问题?机器学习对于1.没有算法解决方案的复杂问题2. 替换长串手动调整的规则3. 构建适应波动环境的系统4.帮助人类学习(例如,数据挖掘)非常有用3. 什么是带标签的训练集?带标签的训练集是包含每.
2021-08-23 16:32:20
907
原创 小白的数据库学习记录——————2
SQL的基本书写规则不区分关键字大小写以分号;结尾,不结尾的话是不会执行的常数的书写方式是固定的单词需要用单角空格或换行分隔表的创建数据库的创建: CREATE DATABASE shop;创建数据库shop表的创建:CREATE TABLE Product(product_id CHAR(4) NOT NULL,product_name VARCHAR(100) NO...
2020-04-03 12:53:54
248
原创 小白的数据库学习记录——1
@经过了初期的准备,要开始正经学习了。MYSQL是一种RDBMS(Relational Database Management System:关系数据库管理系统)RDBMS 术语数据库: 数据库是一些关联表的集合。数据表: 表是数据的矩阵。在一个数据库中的表看起来像一个简单的电子表格。列: 一列(数据元素) 包含了相同类型的数据, 例如邮政编码的数据。行:一行(=元组,或记录)是一...
2020-03-16 15:00:12
407
原创 小白的数据库学习记录——0
数据库学习记录----0作为一个大四学生在这次疫情中将要面临失业,失学两重危机。如今在家实在闲的无所事事,赶上现在这个数据大爆发的时代决定学习一下数据库的使用方法@武腾岳选择合适的软件俗话说工欲善其事必先利其器,在选择的时候我考虑了一些软件,包括:SQL Server数据库,MySQL数据库和MongoDB。首先,MongoDB是非关系型数据库,属于文档型数据库。但是作为一个小白不了解什...
2020-03-15 14:16:56
230
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人