使用 TensorFlow 构建一个简单的卷积神经网络(CNN)模型,完成对 CIFAR-10 数据集的图像分类任务。
使用自动编码器作为特征提取器,先通过自动编码器对图像数据进行降维,将图像从高维映射到低维特征空间,然后将提取的特征传入到 CNN 进行分类。
对比在不使用自动编码器特征提取的情况下,直接使用 CNN 进行分类的模型性能。
# 导入必要的库
import tensorflow as tf
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Conv2D, MaxPooling2D, Flatten
# 加载CIFAR - 10数据集
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# 预处理数据
x_train = x_train / 255.0
x_test = x_test / 255.0
# 构建自动编码器
input_img = Input(shape=(32, 32, 3))
# 编码器
encoded = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
encoded = MaxPooling2D((2, 2), padding='same')(encoded)
# 解码器
decoded = Conv2D(16, (3, 3), activation='relu', padding='same')(encoded)
decoded = tf.keras.layers.UpSampling2D((2, 2))(decoded)
decoded = Conv2D(3, (3, 3), activation='sigmoid', padding='same')(decoded)
autoencoder = Model(input_img, decoded)
# 编译自动编码器
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
# 训练自动编码器
autoencoder.fit(x_train, x_train,
epochs=10,
batch_size=128,
validation_data=(x_test, x_test))
# 获取编码器部分
encoder = Model(input_img, encoded)
# 使用编码器提取特征
x_train_encoded = encoder.predict(x_train)
x_test_encoded = encoder.predict(x_test)
# 构建CNN分类器
input_features = Input(shape=x_train_encoded.shape[1:])
flatten = Flatten()(input_features)
dense1 = Dense(128, activation='relu')(flatten)
output = Dense(10, activation='softmax')(dense1)
classifier = Model(input_features, output)
# 编译CNN分类器
classifier.compile(o