第八章 正则化regularization

探讨了过拟合和欠拟合的概念,以及如何通过减少特征数、使用模型选择算法和正则化来解决过拟合问题。介绍了在代价函数中加入惩罚项的正则化方法,并讨论了其在梯度下降法和正规方程法中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

课时55 过拟合问题
在这里插入图片描述
underfit欠拟合 with high bias
overfit过拟合 with high variance
在这里插入图片描述在这里插入图片描述
解决过拟合问题:

  1. 减少特征数
    -手动选择要保留的特征
    -模型选择算法model selection algorithm
  2. 正则化regularization
    -保留所有的特征, 但是减少θj的量级/权值
    -当我们有很多特征,每一个特征都对预测y有一些贡献的时候works well

课时56 代价函数
在这里插入图片描述
代价函数中,在平方误差项后加上一些惩罚项,为了使代价小,θ3,θ4应该很小接近于0才可以。
在这里插入图片描述
正则化参数λ平衡了更好地拟合训练集的目标与将参数控制得更小(保持模型相对简单)的目标。如果λ太大,对参数的惩罚程度也大,容易欠拟合。

课时57 线性回归的正规化
梯度下降法:
因为regularization不包括θ0,所以梯度下降处把θ0单独列一下。
在这里插入图片描述
normal equation正规方程法:
在这里插入图片描述
如果λ>0,括号里的式子一定是可逆的。

课时61 logistic回归的正规化
梯度下降法:
在这里插入图片描述
式子与线性回归的一样,但是实际不一样,因为假设函数不一样。
高级算法:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值