C3D网络笔记

C3D网络通过3D卷积和池化操作更好地捕捉时空信息,优于2D ConvNets。论文指出3×3×3的卷积核效果最佳,且在多个基准上取得优异的视频动作识别结果。C3D网络结构包括5个卷积层、5个池化层和2个全连接层,输入为16帧的视频片段,经过训练和微调,展示出强大的时空特征学习能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C3D网络

论文链接
论文翻译

该论文发现:

1、3D ConvNets比2D ConvNets更适用于时空特征的学习;

2、对于3D ConvNet而言,在所有层使用3×3×3的小卷积核效果最好;

3、我们通过简单的线性分类器学到的特征名为C3D(Convolutional 3D),在4个不同的基准上优于现有的方法,并在其他2个基准上与目前最好的方法相当。

论文的主要贡献

  • 我们的实验表明3D卷积深度网络是好的学习器,可以对外观和运动同时建模。

  • 我们的经验发现,在有限的探究框架中,所有层使用3×3×3卷积核效果最好。

  • 在4个任务和4个基准上,提出的特征通过简单的线性模型可以超过或接近目前最好的方法(见下表)。这些特征紧凑、计算高效。
    image

该方法我们将整个视频作为输入。

3D卷积联和3D池化

与2D ConvNet相比,3DConvNet能够通过3D卷积和3D池化操作更好地建模时间信息。在3D ConvNets中,卷积和池化操作在时空上执行,而在2DConvNets中,它们仅在空间上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值