C3D网络
该论文发现:
1、3D ConvNets比2D ConvNets更适用于时空特征的学习;
2、对于3D ConvNet而言,在所有层使用3×3×3的小卷积核效果最好;
3、我们通过简单的线性分类器学到的特征名为C3D(Convolutional 3D),在4个不同的基准上优于现有的方法,并在其他2个基准上与目前最好的方法相当。
论文的主要贡献
-
我们的实验表明3D卷积深度网络是好的学习器,可以对外观和运动同时建模。
-
我们的经验发现,在有限的探究框架中,所有层使用3×3×3卷积核效果最好。
-
在4个任务和4个基准上,提出的特征通过简单的线性模型可以超过或接近目前最好的方法(见下表)。这些特征紧凑、计算高效。
该方法我们将整个视频作为输入。
3D卷积联和3D池化
与2D ConvNet相比,3DConvNet能够通过3D卷积和3D池化操作更好地建模时间信息。在3D ConvNets中,卷积和池化操作在时空上执行,而在2DConvNets中,它们仅在空间上