
AI大模型
文章平均质量分 89
AI大模型
三思而后行,慎承诺
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Ollama 是什么
【代码】Ollama 是什么。原创 2025-04-25 10:58:05 · 681 阅读 · 0 评论 -
训练出一个模型需要哪些步骤
训练一个大模型(如LLM)是一个系统化工程,涉及数据、算法、算力和工程优化的复杂协作。掌握这些步骤后,可根据实际需求调整流程。原创 2025-04-03 17:24:57 · 594 阅读 · 0 评论 -
大模型中的参数规模与显卡匹配
在大模型训练和推理中,显卡(GPU/TPU)的选择与模型参数量紧密相关,需综合考虑显存、计算能力和成本。70B模型原始显存需求(FP16):140GB →。*基于AWS p4d.24xlarge实例估算。→ 需多卡分布式训练。实际部署前,建议使用。原创 2025-04-03 17:23:05 · 1205 阅读 · 0 评论 -
大模型训练必须使用英伟达的显卡吗
大模型训练并非必须使用英伟达(NVIDIA)显卡,但英伟达GPU因其成熟的生态和工具链目前仍是主流选择。随着AI芯片竞争加剧,未来3-5年可能会出现更成熟的替代方案,但目前训练百亿级大模型仍建议优先考虑英伟达硬件。原创 2025-04-03 17:21:30 · 787 阅读 · 0 评论 -
大模型的参数规模
在大模型(如LLM、多模态模型)的讨论中,= 各层参数量累加,最终以。原创 2025-04-02 15:20:18 · 1853 阅读 · 0 评论 -
Mistral模型
Mistral 是由法国初创公司 Mistral AI 开发的一系列高效开源大语言模型(LLM),以其小体积、高性能著称,尤其在7B(70亿参数)规模下表现优异,甚至超越部分更大的模型(如Llama 2 13B)。以下是关键细节:优势总结:(2)本地量化运行(llama.cpp + GGUF)下载GGUF模型(如Mistral-7B-v0.1-Q4_K_M.gguf)。使用llama.cpp运行:(3)微调(LoRA/PEFT)支持Hugging Face生态的微调工具:5. Mistr原创 2025-04-02 13:55:36 · 700 阅读 · 0 评论 -
模大型格式
是一种专为**本地运行大型语言模型(LLMs)**设计的二进制文件格式,由。它优化了模型加载、内存管理和跨平台兼容性,特别适合在。团队开发,用于替代早期的。设备上高效运行量化模型。GGUF 文件通常以。原创 2025-04-02 13:50:28 · 738 阅读 · 0 评论 -
vLLM、 llama-box 和 vox-box
以下是关于和。原创 2025-04-02 11:25:30 · 1094 阅读 · 0 评论 -
Python 学习路线指南
记住,学习编程最重要的是坚持和实践,祝你学习顺利!原创 2025-03-31 09:23:00 · 662 阅读 · 0 评论 -
大模型介绍
其发布的模型包括DeepSeek LLM、DeepSeek - V3、DeepSeek - R1等,具有强大的语言理解和生成能力,可进行高质量的文本分析、翻译、摘要生成等任务,还能根据给定的主题、风格和要求,快速生成高质量文案。例如,DeepSeek - V3是一个混合专家模型(MoE),有6710亿参数,通过不同的训练方式可得到具有不同能力的模型,如聊天模型经过额外的指令调整和人类反馈强化学习,在编码和数学等任务上表现出色。DeepSeek属于大语言模型(LLM)这一类别。原创 2025-03-29 11:04:36 · 965 阅读 · 0 评论 -
AI 强化学习
在预训练语言模型(PLM)的基础上,使用高质量的标注数据(输入-输出对)进行有监督的微调,使模型适应特定任务。通过人类对模型输出的排序或评分训练奖励模型(RM),再用强化学习(如PPO)优化策略模型,使其符合人类偏好。用AI模型(如大语言模型)替代人类标注反馈,自动化偏好对齐流程。绕过显式奖励建模,直接利用偏好数据优化策略模型,将RLHF问题转化为分类任务。选择技术需权衡数据、计算资源和对齐目标。随着LLM发展,自动化、低成本的偏好对齐(如RLAIF、DPO)将成为主流方向。原创 2025-03-29 11:01:30 · 670 阅读 · 0 评论