【论文阅读-句向量】Evaluation of BERT and ALBERT Sentence Embedding Performance on Downstream NLP Tasks

昨天说到sentence embedding,今天就补了一篇BERT里面[CLS]的论文。BERT 以及ALBERT(A Lite BERT)类的预训练模型可以通过[CLS]来生成句向量,但是其效果真的好吗?
这篇笔记首发于:https://zhuanlan.zhihu.com/p/477863892

Title: Evaluation of BERT and ALBERT Sentence Embedding Performance on Downstream NLP Tasks

From: ICPR 2020

Link: https://arxiv.org/abs/2101.10642

image-20220308194552087

背景

BERT 模型在训练时候,引入了一个额外的任务 next sentence prediction(NSP),所以除了token的embeddings,还可以获得句子的embedding,用[CLS]来表示。除了用这个表示,如果想获得句向量,一种可替代的方式是对句子中所有token的embedding取平均值。但这两种方式效果都不是很好。这篇论文里,作者提出两种模式,基于BERT的Sentence-BERT(SBERT)以及基于ALBERT的Sentence-ALBERT (SALBERT)。

Baseline模型 以及 Proposed model

  • [CLS] embedding

    [CLS] 作为句向量的输出是最直接的方式。而且,[CLS]在微调阶段也可以继续被优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值