三阶矩阵的lu分解详细步骤_计算方法(三)矩阵分解2-LU分解

本文介绍了LU分解的概念,它是矩阵分解的一种,用于解决线性方程组。详细阐述了三阶矩阵的LU分解步骤,并提供了Python和Matlab的实现代码,帮助理解该过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积,作为解线性方程以及优化高斯消去法的一个分解方法,在后续文章中会使用到。

如下列方程组Ax=b

82a35ca24f86ea10c333b5847cfe52c6.png

系数矩阵A为

8306404f017eaefe1afd14364c68c3d8.png

则矩阵可以被分解为LUx=b的形式系数矩阵分解为

72c4fb059a83a1e091552c8b3a6aff05.png

其中对于矩阵L有

gif.latex?l_%7Bij%7D%3Da_%7Bij%7D-%5Csum_%7Bk%3D0%7D%5E%7Bi-1%7D%5Calpha_%7Bik%7D-%5Cbeta_%7Bkj%7D

对于矩阵U有

8ca703dcc679872449295d8b88d3599f.gif

Python实现

def LU_decomposition(A):

n=len(A[0])

L = np.zeros([n,n])

U = np.zeros([n, n])

for i in range(n):

L[i][i]=1

if i==0:

U[0][0] = A[0][0]

for j in range(1,n):

U[0][j]=A[0][j]

L[j][0]=A[j][0]/U[0][0]

else:

for j in range(i, n):#U

temp=0

for k in range(0, i):

temp = temp+L[i][k] * U[k][j]

U[i][j]=A[i][j]-temp

for j in range(i+1, n):#L

temp = 0

for k in range(0, i ):

temp = temp + L[j][k] * U[k][i]

L[j][i] = (A[j][i] - temp)/U[i][i]

return L,U

2a42ec5fb4a9f4d9c4e19435d698cb01.png

Matlab实现

function LU(a,n)

m = zeros(n,n);

for i = 1:n

m(i,i) = 1;

end

for j = 1 : n-1

if abs(a(j,j))

error('zero pivot encountered');

end

for i = j+1 : n

mult = a(i,j)/a(j,j);

m(i,j) = mult;

for k = j:n

a(i,k) = a(i,k) - mult*a(j,k);

end

end

end

094f3d960ef40dc2eaed8201f69ebdc3.png

注:Matlab其实自带了LU分解 lu(A)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值