slope one 推荐算法python 代码_推荐系统SlopeOne算法的Python实现,数据基于MovieLens...

该博客介绍了Slope One推荐算法的Python实现,通过解析MovieLens数据集,计算两两物品评分差的平均值,并预测用户未评分物品的评分,以推荐TopN。文章详细展示了代码流程和关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据从

数据训练集下载地址

下载,我选的是1MB版本的数据,大约10W+评分,9K+电影,600+用户。

使用ratings.csv,格式为userId,movieId,评分,时间戳。

步骤:

1、解析CSV文件,构建训练集。

2、计算两两物品分差平均值。

3、预测指定用户未评分物品的评分,推荐TopN。

SlopeOne算法理解起来简单,实现起来也简单,按照论文的描述,推荐结果也很不错。

当然有个不是问题的问题,因为要计算两两物品的分差的平均值,所以这一段比较耗时间。

#!/usr/bin/python3

import math

import csv

import datetime

import heapq

import json

from tqdm import tqdm

def buildTarin():

"""

处理数据集,

users=用户ID:{物品ID,评分}

items=物品ID:{用户ID,评分}

itemUsers=物品ID:[用户ID集]

userItems=用户ID:[物品ID集]

allItems=所有物品ID集

"""

startTime = datetime.datetime.now()

users = dict()

items = dict()

itemUsers = dict()

userItems = dict()

allItems = set()

with open('ratings.csv') as f:

f_csv = csv.reader(f)

for row in f_csv:

userId=int(ro

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值