L1 loss
L1 loss常用别称:
- L1范数损失
- 最小绝对偏差(LAD)
- 平均绝对值误差(MAE)
其中,yi是真实值,f(xi)是预测值,n是样本点个数
优缺点?
- 优点:无论对于什么样的输入值,都有着稳定的梯度,不会导致梯度爆炸问题,具有较为稳健性的解
- 缺点:在中心点是折点,不能求导,梯度下降时要是恰好学习到w=0就没法接着进行了
什么时候使用?
- 回归任务
- 简单模型
- 神经网络通常比较复杂,直接使用L1 loss作为损失函数的非常少
L2 loss
L2 loss常用别称:
- L2范数损失
- 最小均方误差(LSE)
- 均方误差(MSE)
其中,yi是真实值,f(xi)是预测值,n是样本点个数
优缺点?
- 优点:各点都连续光滑,方便求导,具有较为稳定的解
- 缺点:不是特别的稳健,因为当函数的输入值距离真实值较远的时候,对应loss值很大在两侧,则使用梯度下降法求解的时候梯度很大,可能导致梯度爆炸