ElasticSearch BM-25自定义权重

本文解析了Elasticsearch中BM-25算法的得分构成,包括boost、idf和tf的具体计算方法,以及如何在多字段查询中应用权重调整。重点讲解了在title、content和EntityList字段上的得分计算实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ElasticSearch BM-25

https://www.cnblogs.com/novwind/p/15177871.html

通过kibana中配置explain属性后,可以看出来每个文档的得分由:
score = boost * idf *tf
组成。

 "_explanation" : {
          "value" : 1.3767608,
          "description" : "sum of:",
          "details" : [
            {
              "value" : 1.0121177,
              "description" : "max of:",
              "details" : [
                {
                  "value" : 1.0121177,
                  "description" : "weight(title:student in 0) [PerFieldSimilarity], result of:",
                  "details" : [
                    {
                      "value" : 1.0121177,
                      "description" : "score(freq=1.0), computed as boost * idf * tf from:",
                      "details" : [
                        {
                          "value" : 3.3000002,
                          "description" : "boost",
                          "details" : [ ]
                        },
                        {
                          "value" : 0.6931472,
                          "description" : "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                          "details" : [
                            {
                              "value" : 2,
                              "description" : "n, number of documents containing term",
                              "details" : [ ]
                            },
                            {
                              "value" : 4,
                              "description" : "N, total number of documents with field",
                              "details" : [ ]
                            }
                          ]
                        },
                        {
                          "value" : 0.44247788,
                          "description" : "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                          "details" : [
                            {
                              "value" : 1.0,
                              "description" : "freq, occurrences of term within document",
                              "details" : [ ]
                            },
                            {
                              "value" : 1.2,
                              "description" : "k1, term saturation parameter",
                              "details" : [ ]
                            },
                            {
                              "value" : 0.75,
                              "description" : "b, length normalization parameter",
                              "details" : [ ]
                            },
                            {
                              "value" : 4.0,
                              "description" : "dl, length of field",
                              "details" : [ ]
                            },
                            {
                              "value" : 3.75,
                              "description" : "avgdl, average length of field",
                              "details" : [ ]
                            }
                          ]
                        }
                      ]
                    }
                  ]
                },
                {
                  "value" : 0.18794037,
                  "description" : "weight(content:student in 0) [PerFieldSimilarity], result of:",
                  "details" : [
                    {
                      "value" : 0.18794037,
                      "description" : "score(freq=5.0), computed as boost * idf * tf from:",
                      "details" : [
                        {
                          "value" : 2.2,
                          "description" : "boost",
                          "details" : [ ]
                        },
                        {
                          "value" : 0.105360515,
                          "description" : "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                          "details" : [
                            {
                              "value" : 4,
                              "description" : "n, number of documents containing term",
                              "details" : [ ]
                            },
                            {
                              "value" : 4,
                              "description" : "N, total number of documents with field",
                              "details" : [ ]
                            }
                          ]
                        },
                        {
                          "value" : 0.8108108,
                          "description" : "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                          "details" : [
                            {
                              "value" : 5.0,
                              "description" : "freq, occurrences of term within document",
                              "details" : [ ]
                            },
                            {
                              "value" : 1.2,
                              "description" : "k1, term saturation parameter",
                              "details" : [ ]
                            },
                            {
                              "value" : 0.75,
                              "description" : "b, length normalization parameter",
                              "details" : [ ]
                            },
                            {
                              "value" : 13.0,
                              "description" : "dl, length of field",
                              "details" : [ ]
                            },
                            {
                              "value" : 13.5,
                              "description" : "avgdl, average length of field",
                              "details" : [ ]
                            }
                          ]
                        }
                      ]
                    }
                  ]
                }
              ]
            },
            {
              "value" : 0.36464313,
              "description" : "weight(EntityList:student in 0) [PerFieldSimilarity], result of:",
              "details" : [
                {
                  "value" : 0.36464313,
                  "description" : "score(freq=1.0), computed as boost * idf * tf from:",
                  "details" : [
                    {
                      "value" : 4.4,
                      "description" : "boost",
                      "details" : [ ]
                    },
                    {
                      "value" : 0.18232156,
                      "description" : "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                      "details" : [
                        {
                          "value" : 2,
                          "description" : "n, number of documents containing term",
                          "details" : [ ]
                        },
                        {
                          "value" : 2,
                          "description" : "N, total number of documents with field",
                          "details" : [ ]
                        }
                      ]
                    },
                    {
                      "value" : 0.45454544,
                      "description" : "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                      "details" : [
                        {
                          "value" : 1.0,
                          "description" : "freq, occurrences of term within document",
                          "details" : [ ]
                        },
                        {
                          "value" : 1.2,
                          "description" : "k1, term saturation parameter",
                          "details" : [ ]
                        },
                        {
                          "value" : 0.75,
                          "description" : "b, length normalization parameter",
                          "details" : [ ]
                        },
                        {
                          "value" : 1.0,
                          "description" : "dl, length of field",
                          "details" : [ ]
                        },
                        {
                          "value" : 1.0,
                          "description" : "avgdl, average length of field",
                          "details" : [ ]
                        }
                      ]
                    }
                  ]
                }
              ]
            }
          ]
        }

其中的boost = 2.2是下面公式中的k+1 = 1.2 + 1 =2.2组成,当我们在某个字段中加权时乘的是该值,例如我在两个字段,title和content字段中查询,并且title字段加权为1.1,则title字段中的得分会1.1*2.2 = 2.46。elasticsearch中通过multi-match查询多个字段时最后的排序会根据得分值为最高的字段的值进行排序。
Elasticsearch bm25算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值