(三)组合特征与特征变换 学习简要笔记 #机器学习特征工程 #CDA学习打卡

本文详细探讨了统计特征、业务特征和组合特征在数据分析中的重要性,以及如何通过对数变换和Box_Cox变换进行特征变换。重点介绍了如何利用GBDT和LR模型结合这些特征提高模型性能,并强调了特征工程在实际问题中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一. 统计及组合特征

1)统计特征

2)业务特征

3)组合特征

(a)简单组合特征

(b)模型特征组合

二. 特征变换

1)对数变换(Logarithmic Transformation)

(a)简介

(b)代码

2)Box_Cox变换

(a)简介

(b)代码


一. 统计及组合特征

基本特征(时间特征与空间特征)具体内容可见第一期。

1)统计特征

2)业务特征

除了前面常见的统计特征包括平均值、方差、最大值、最小值、中位数、偏度、峰度等。还有一部分特征是业务统计特征,这部分需要结合到业务场景做具体统计,可以帮助我们更好地理解数据的分布和特点,为后续的模型训练和预测提供有用的信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值