插值法补齐缺失数据_机器学习(三):数据预处理--数据预处理的基本方法

本文介绍了数据预处理的基本方法,包括去除唯一属性、缺失值处理(如插值法和模型填充)、离群值处理、特征编码、数据标准化以及特征选择。重点探讨了插值法在填补数据缺失值中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据预处理的方法主要包括去除唯一属性、处理缺失值、属性编码、数据标准化正则化、特征选择、主成分分析等,这篇文章将会全面地总结数据预处理的基本方法。

一、去除唯一属性

唯一属性通常是一些id属性,这些属性并不能刻画样本自身的分布规律,所以简单地删除这些属性即可。

二、缺失值处理

(一)缺失值的分类

完全随机缺失:指的是数据的缺失是完全随机的;
随机缺失:指的是数据的缺失不是完全随机的,和完全变量有关;
完全不随机缺失:指的是数据的缺失与不完全变量自身的取值相关; 缺失值会使得系统丢失了大量的有用信息,系统所表现出来的不确定性更加显著,系统中蕴含的确定性成分更难把握,包含空值的不完全变量会使得挖掘过程陷入混乱。

(二)缺失值处理的三种方法

直接使用含有缺失值的特征;删除含有缺失值的特征(该方法在包含缺失值的属性含有大量缺失值而仅仅包含极少量有效值时是有效的);缺失值补全。 删除含有缺失值的特征:若变量的缺失率较高(大于80%),覆盖率较低,且重要性较低,可以直接将变量删除。 (1)均值插补。数据的属性分为定距型和非定距型。如果缺失值是定距型的,就以该属性存在值的平均值来插补缺失的值;如果缺失值是非定距型的,就根据统计学中的众数原理,用该属性的众数(即出现频率最高的值)来补齐缺失的值。
Ps : 定距型数据--数据的中间级,用数字表示个体在某个有序状态中所处的位置,不能做四则运算。例如,“受教育程度”,文盲半文盲=1,小学=2,初中=3,高中=4,大学=5,硕士研究生=6,博士及其以上=7。 (2)利用同类均值插补。同均值插补的方法都属于单值插补,不同的是,它用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。假设X=(X1,X2…Xp)为信息完全的变量,Y为存在缺失值的变量,那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。如果在以后统计分析中还需以引入的解释变量和Y做分析,那么这种插补方法将在模型中引入自相关,给分析造成障碍。 (3)极大似然估计(Max Likelihood ,ML)。在缺失类型为随机缺失的条件下,假设模型对于完整的样本是正确的,那么通过观测数据的边际分布可以对未知参数进行极大似然估计(Little and Rubin)。这种方法也被称为忽略缺失值的极大似然估计,对于极大似然的参数估计实际中常采用的计算方法是期望值最大化(Expectation Maximization,EM)。该方法比删除个案和单值插补更有吸引力,它一个重要前提:适用于大样本。有效样本的数量足够以保证ML估计值是渐近无偏的并服从正态分布。但是这种方法可能会陷入局部极值,收敛速度也不是很快,并且计算很复杂。 (4)多重插补(Multiple Imputation,MI)。多值插补的思想来源于贝叶斯估计,认为待插补的值是随机的,它的值来自于已观测到的值。具体实践上通常是估计出待插补的值,然后再加上不同的噪声,形成多组可选插补值。根据某种选择依据,选取最合适的插补值。
多重插补方法分为三个步骤:①为每个空值产生一套可能的插补值,这些值反映了无响应模型的不确定性;每个值都可以被用来插补数据集中的缺失值,产生若干个完整数据集合。②每个插补数据集合都用针对完整数据集的统计方法进行统计分析。③对来自各个插补数据集的结果,根据评分函数进行选择,产生最终的插补值。
假设一组数据,包括三个变量Y1,Y2,Y3,它们的联合分布为正态分布,将这组数据处理成三组,A组保持原始数据,B组仅缺失Y3,C组缺失Y1和Y2。在多值插补时,对A组将不进行任何处理,对B组产生Y3的一组估计值(作Y3关于Y1,Y2的回归),对C组作产生Y1和Y2的一组成对估计值(作Y1,Y2关
### 数据预处理机器学习数据分析中的应用场景 数据预处理数据分析和机器学习项目中不可或缺的一部分,其目的是通过一系列操作提高数据的质量,从而确保分析结果的准确性和模型性能。以下是数据预处理在不同场景下的具体应用: #### 1. 数据清洗 数据清洗是数据预处理的核心步骤之一,主要涉及处理缺失值、异常值和重复值等问题。例如,在医学领域,电子病历和实验室检查结果可能存在大量缺失值。在这种情况下,可以通过插值法或均值填充等方法补齐这些缺失值[^3]。此外,对于异常值,可以使用统计学方法(如标准差法或箱线图法)进行检测并选择性地剔除或修正。 #### 2. 数据转换 数据转换是指将原始数据转化为更适合分析的形式。常见的转换方法包括标准化、归一化、离散化和特征编码等。例如,在构建机器学习模型时,通常需要对数值型特征进行归一化处理,以避免不同量纲的特征对模型的影响[^1]。代码示例如下: ```python from sklearn.preprocessing import MinMaxScaler # 创建归一化对象 scaler = MinMaxScaler() # 假设 X 是一个包含数值型特征的数据集 X_normalized = scaler.fit_transform(X) ``` #### 3. 特征选择与降维 在高维数据中,特征选择和降维技术可以帮助减少冗余信息,提高模型效率。例如,在图像识别任务中,主成分分析(PCA)是一种常用的降维方法,能够提取出最重要的特征,同时降低计算复杂度[^2]。以下是一个 PCA 的实现示例: ```python from sklearn.decomposition import PCA # 创建 PCA 对象,保留 95% 的方差 pca = PCA(n_components=0.95) # 假设 X 是一个高维数据集 X_reduced = pca.fit_transform(X) ``` #### 4. 文本数据处理 在自然语言处理(NLP)领域,文本数据需要经过分词、去除停用词、词干提取和向量化等预处理步骤。例如,TF-IDF 和词嵌入(如 Word2Vec 或 BERT)是常用的文本向量化方法[^4]。以下是一个简单的 TF-IDF 示例: ```python from sklearn.feature_extraction.text import TfidfVectorizer # 创建 TF-IDF 向量化对象 vectorizer = TfidfVectorizer() # 假设 corpus 是一个包含文本数据的列表 X_tfidf = vectorizer.fit_transform(corpus) ``` #### 5. 时间序列数据处理 在金融、气象等领域,时间序列数据预处理尤为重要。这包括平滑处理、差分运算、周期性调整等。例如,移动平均法可以用于平滑时间序列数据,消除短期波动的影响[^1]。代码示例如下: ```python import pandas as pd # 假设 df 是一个包含时间序列数据的 DataFrame df['moving_average'] = df['value'].rolling(window=7).mean() ``` ### 总结 数据预处理机器学习数据分析中具有广泛的应用场景,从数据清洗到特征工程,每一步都直接影响最终的结果质量。根据不同的任务需求,可以选择合适的预处理方法来优化数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值