蓝桥杯算法解析(十一):高级图论——网络流与强连通分量的艺术

蓝桥杯算法解析(十一):高级图论——网络流与强连通分量的艺术

前言:图论在竞赛中的战略地位

图论作为算法竞赛的核心领域,在蓝桥杯高级别比赛中占据着举足轻重的地位。根据近5年的赛事统计,图论相关题目在国赛中的出现率稳定在40%以上,其中网络流和强连通分量更是频繁出现在压轴题中。本文将深入解析这两大核心知识点,通过系统化的理论讲解和实战案例分析,帮助读者攻克图论难关。

🔥 本文核心价值:

  • 网络流建模的5种经典套路
  • Tarjan算法的3种应用场景
  • 二分图匹配的4种解法对比
  • 6道蓝桥杯真题的深度解析

第一章 网络流基础与建模技巧(约10000字)

1.1 最大流算法全家桶

算法对比表
算法 时间复杂度 适用场景 编码难度
Ford-Fulkerson O(E*max_flow) 小流量图 ★★☆☆☆
Edmonds-Karp O(VE²) 基础教学 ★★★☆☆
Dinic O(V²E) 普遍适用 ★★★★☆
ISAP O(V²E) 性能要求高 ★★★★★
Dinic算法实现(含当前弧优化)
from collections import deque

class Edge:
    def __init__(self, to, rev, capacity):
        self.to = to
        self.rev = rev
        self.capacity = capacity

class Dinic:
    def __init__(self, n):
        self.size = n
        self.graph = [[] for _ in range(n)]
    
    def add_edge(self, fr, to, cap):
        forward = Edge(to, len(self.graph[to]), cap)
        backward = Edge(fr, len(self.graph[fr]), 0)
        self.graph[fr].append(forward)
        self.graph[to].append(backward)
    
    def bfs_level(self, s, t, level):
        q = deque()
        level[:] = [-1]*self.size
        level[s] = 0
        q.append(s)
        while q:
            v = q.popleft()
            for edge in self.graph[v]:
                if edge.capacity >0 and level[edge.to]<0:
                    level[edge.to] = level[v]+1
                    q.append(edge.to)
    
    def dfs_flow(self, v, t, flow, level, ptr):
        if v == t:
            return flow
        while ptr[v] < len(self.graph[v]):
            edge = self.graph[v][ptr[v]]
            if edge.capacity>0 and level[v]<level[edge.to]:
                min_flow = min(flow, edge.capacity)
                result = self.dfs_flow(edge.to, t, min_flow, level, ptr)
                if result > 0:
                    edge.capacity -= result
                    self.graph[edge.to][edge.rev].capacity += result
                    return result
            ptr[v] += 1
        return 0
    
    def max_flow(self, s, t):
        flow = 0
        level = [-1]*self.size
        while True:
            self.bfs_level(s, t, level)
            if level[t] < 0:
                return flow
            ptr = [0]*self.size
            while True:
                f = self.dfs_flow(s, t, float('inf')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全息架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值