蓝桥杯算法解析(十一):高级图论——网络流与强连通分量的艺术
前言:图论在竞赛中的战略地位
图论作为算法竞赛的核心领域,在蓝桥杯高级别比赛中占据着举足轻重的地位。根据近5年的赛事统计,图论相关题目在国赛中的出现率稳定在40%以上,其中网络流和强连通分量更是频繁出现在压轴题中。本文将深入解析这两大核心知识点,通过系统化的理论讲解和实战案例分析,帮助读者攻克图论难关。
🔥 本文核心价值:
- 网络流建模的5种经典套路
- Tarjan算法的3种应用场景
- 二分图匹配的4种解法对比
- 6道蓝桥杯真题的深度解析
第一章 网络流基础与建模技巧(约10000字)
1.1 最大流算法全家桶
算法对比表
算法 | 时间复杂度 | 适用场景 | 编码难度 |
---|---|---|---|
Ford-Fulkerson | O(E*max_flow) | 小流量图 | ★★☆☆☆ |
Edmonds-Karp | O(VE²) | 基础教学 | ★★★☆☆ |
Dinic | O(V²E) | 普遍适用 | ★★★★☆ |
ISAP | O(V²E) | 性能要求高 | ★★★★★ |
Dinic算法实现(含当前弧优化)
from collections import deque
class Edge:
def __init__(self, to, rev, capacity):
self.to = to
self.rev = rev
self.capacity = capacity
class Dinic:
def __init__(self, n):
self.size = n
self.graph = [[] for _ in range(n)]
def add_edge(self, fr, to, cap):
forward = Edge(to, len(self.graph[to]), cap)
backward = Edge(fr, len(self.graph[fr]), 0)
self.graph[fr].append(forward)
self.graph[to].append(backward)
def bfs_level(self, s, t, level):
q = deque()
level[:] = [-1]*self.size
level[s] = 0
q.append(s)
while q:
v = q.popleft()
for edge in self.graph[v]:
if edge.capacity >0 and level[edge.to]<0:
level[edge.to] = level[v]+1
q.append(edge.to)
def dfs_flow(self, v, t, flow, level, ptr):
if v == t:
return flow
while ptr[v] < len(self.graph[v]):
edge = self.graph[v][ptr[v]]
if edge.capacity>0 and level[v]<level[edge.to]:
min_flow = min(flow, edge.capacity)
result = self.dfs_flow(edge.to, t, min_flow, level, ptr)
if result > 0:
edge.capacity -= result
self.graph[edge.to][edge.rev].capacity += result
return result
ptr[v] += 1
return 0
def max_flow(self, s, t):
flow = 0
level = [-1]*self.size
while True:
self.bfs_level(s, t, level)
if level[t] < 0:
return flow
ptr = [0]*self.size
while True:
f = self.dfs_flow(s, t, float('inf')