基础实验:
想对这些数据进行研究的时候,很重要的一点就是要和神经科医生反复讨论脑电图定义的事件。也就是说要深入理解EEG是如何被手动解释的,并将该过程转换为算法描述。经过多次讨论,我们将重点放在六路分类上。
(1) 棘波和/或尖波(SPSW):癫痫患者典型的癫痫样瞬变。
(2) 周期性偏侧性癫痫样放电(PLED):脑电图异常,由重复性的棘波或尖波放电组成,在一个半球呈局灶性或偏侧性,并以几乎固定的时间间隔复发。
(3) 广义周期性癫癎样放电(GPED):周期性短间隔弥漫性放电、周期性长间隔弥漫性放电,并根据放电间隔的不同表现为抑制性发作。三相波(弥漫性和双侧同步尖峰,双侧占优势,通常以1-2赫兹的频率周期性出现)也包括在这一类中。
(4) 伪影(ARTF):记录的非脑源性电活动,如由设备或环境引起的。
(5) 眨眼:通常会被混淆为峰值的常见事件。
(6) 背景(BCKG):所有其他信号。
六路信号的分析:
这六路分类实验跟其他检测中风和癫痫的实验非常相似。
前三类是信息承载类,因为它们描述了在人工解释脑电图中至关重要的事件。这三类事件的主要区别是周期性的程度和这些事件跨渠道发生的程度。
最后三个类用于改进背景模型。背景建模是任何试图对信号的时间演化进行建模的机器学习系统(如隐马尔可夫模型)的重要组成部分。我们让系统自动进行背景/非背景分类作为建模过程的一部分,而不是使用启发式预处理算法来检测感兴趣的信号。
伪影(噪声)和眨眼现象频繁出现,值得单独学习。
与前五个类不匹配的其余事件被集中到后台类中。因此,后台类模型的健壮性和强大性是非常重要的。<