目录
一、摘要:
使用机器学习应用在自动通过脑电图检测癫痫疾病是一个有挑战性的问题,因为多通道信号包含有用的信号(比如说癫痫)很少,其中还有许多干扰信号,我们称为伪迹信号(如眼动信号,咀嚼信号等),会干扰检测结果。目前的系统误报率高得让人难以接受。以前由于缺乏数据,深度学习算法无法有效地应用。但是,现在因为有TUH EEG Seizure Corpus这个数据集的公布,我们希望用深度学习算法应用到癫痫的自动检测上。
在本文中,作者使用这个数据库来建立CNN和LSTM在内的多种混合网络模型。并且提出了一个新的循环卷积结构的模型,在每24小时7次误报的基础上提供30%的灵敏度。作者还在一个基于杜克大学癫痫语料库的有效评估集上进行测试,性能跟TUH EEG Seizure Corpus一致。作者的工作表明,适合处理序列数据的深度学习架构对于识别性能至关重要,并且有望应用在临床应用上。
二、介绍:
脑电图(EEG)是神经学医生用来检测脑部疾病比如癫痫的重要途径。但需要耗费大量人力物力(懒惰是人类生产力提升的根本推动力。)。此论文虽然聚焦在癫痫检测的问题上,但是同样适用于其他EEG的问题。在过去应用了一些机器学习的方法,时频分析方法(Gotman等人。1982)和非线性技术(Schad等人。2008年)由于较高的误检率,并不实用。作者在TUSZ的语料库基础上,提出了一种新的深度学习架构,用来评估了几个标准的癫痫发作检测任务。在保持灵敏度和特异性的同时降低了误报率。作者证明,该系统的性能目前已接近临床使用可接受的程度。
三、处理:
作者展示了处理EEG信号的通用架构。多通道信号以250赫兹的频率采样,使用16位分辨率,转换为基于特征的表示,通过序列建模器进行处理,然后使用各种统计模型进行后处理,这些模型基于专业知识提出。作者评估并实现了高斯混合模型(GMMs)、隐马尔可夫模型(HMMs)和深度学习(DL)的几种体系结构。处理EEG信号的通用结构如下图:
1、特征提取:
虽然可以使用深度学习来直接提取特征,但是本系统使用标准线性频率倒谱系数的特征提取方法(LFCC)(Harati 2015;Lopez 2016)。作者还使用了特性的一阶导数和二阶导数,用以提高性能。作者以1秒为周期分析信号,并将此间隔进一步划分为10帧,每帧0.1秒,以便使用0.2s分析窗口(称为窗口持续时间)每0.1秒计算特征(称为帧持续时间)。特征提取过程的输出是22个通道中每个通道的维数为26的特征向量,帧持续时间为0.1秒。