四遥感数字图像的计算机分类
第四章 遥感数字图像计算机解译;一、遥感数字图像计算机分类的一般原理;一、遥感数字图像计算机分类的一般原理;遥感图像分类的实质;影响遥感图像分类精度的因素大气状况的影响:吸收、散射。下垫面的影响:下垫面的覆盖类型和起伏状态对分类具有一定的影响。其他因素的影响:云朵覆盖;不同时相的光照条件不同,同一地物的电磁辐射能量不同;地物边界的多样性。 ;统计模式识别的概念和基本问题;统计模式识别的概念和基本问题;统计模式识别的概念和基本问题;统计模式识别的概念和基本问题;光谱特征向量与特征点集群 ;光谱特征向量与特征点集群 ;光谱特征向量与特征点集群 ;光谱特征向量与特征点集群 ;光谱特征向量与特征点集群 ;光谱特征向量与特征点集群 ;地物与光谱特征空间的关系;计算机分类的基本原理;计算机分类的基本原理;计算机分类处理的一般过程;二、遥感分类的常用判别函数;马氏距离(Mahalanobis);二、遥感分类的常用判别函数;三、遥感数字图像的分类方法;监督分类(supervised classification) 通过选择代表各类别的已知样本(训练区)的象元光谱特征,事先取得个类别的参数,确定判别函数,从而进行分类。 在监督分类中,先定义信息类,然后检验它们的光谱可分性。;监督分类(supervised classification)训练区的作用已知覆盖类型的代表样区用于描述主要特征类型的光谱属性其精度直接影响分类结果训练区的选择训练区必须具有典型性和代表性图件时间和空间上的一致性;训练区的选择;水体;TM Band 3;训练样本中的各个像素在特征空间中的分布情况;判别分析分类方法线性判别分析分类逐步判别分析分类平行多面体分类(很少用)最小距离分类(距离判别函数)最大似然比分类(最常用);最小距离分类法 最小距离分类法是以特征空间中的距离作为像元分类的依据。原理简单,计算速度快,分类精度不高。;平行多面体分类;最大似然比分类法;使用最大似然比分类法的注意事项各类别的训练数据至少要为特征维数的2-3倍以上,这样才能统计出具有较高精度的均值、方差与协方差;如果2个以上的波段相关性很强,那么方差协方差矩阵的逆矩阵就不存在,或非常不稳定。在训练数据几乎都取相同值的均质性数据组的情况下也是如此。此时,最好采用主成分分析法,把维数减到仅剩相互独立的波段。当总体分布不符合正态分布时,不适于采用以正态分布的假设为基础的最大似然比分类法。其分类精度也将下降。;分类结果;非监督分类法不必使用训练样区数据作为分类的基础。通过检验大量的未知像元并根据多光谱空间中的自然集群将它们分为若干类。基本前提:同种地物类型的值在测量空间上应该相互接近,而不同的地物类型应该具有比较明显的可分性。区别:监督分类法确定有用信息类别,然后再检验它们的光谱可分性;而非监督分类法先确定光谱的可分性,然后再确定它们的有用信息。;分类算法的思路 先选择若干个模式点作为聚类的中心,每一个中心代表一个类别,按照某种相似性度量方法将各模式归于各聚类中心所代表的类别,形成初始分类。然后由聚类准则判断初始分类是否合理,如果不合理就修改分类,如此反复迭代运算,直到合理为止。; 根据事先指定的某一准则,而进行计算机自动判别归类,无须人为干预,分类后需确定地面类别。 在非监督分类中,先确定光谱可分的类别,然后定义它们的信息类。;非监督分类(unsupervised classification);非监督分类基本过程;非监督分类(unsupervised classification);非监督分类(unsupervised classification);;初始类别参数的选定方法最大最小距离选心法(效果最好)选心原则:各初始类别之间尽可能保持远距离;先抽样,设有n个样本,计算步骤:;非监督分类(unsupervised classification);算法流程:;;;; 总结:以初始类别为“种子”进行自动迭代聚类过程,它可以自动地进行类别的“合并”与“分裂”,其各个参数也在不断地聚类调整中逐渐确定,并最终构成所需要的判别函数。 因此,基准类别参数的确定过程,也正是利用光谱特征本身的统计性质对判别函数的不断调整和“训练”的过程。;K-mean算法 基本思想:通过迭代,移动各个基准类别的中心,得到最好的聚类结果。 聚类准则(收敛条件):使每一聚类中,多模式点到该类别的中心的距离的平方和最小。;;K-mean算法的计算步骤:;K-