- Deep Few-Shot Learning for Hyperspectral Image Classification
作者:Bing Liu , Xuchu Yu, Anzhu Yu, Pengqiang Zhang, Gang Wan, and Ruirui Wang
出处:IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
发表时间:2019
1.1摘要与贡献:
目前,深度学习方法已被成功用于高光谱图像(HSI)分类。然而,想要训练一个深度学习的分类器需要成千上百个标记样本。这篇文章提出了一种深度学习方法来解决HSI分类的小样本问题。在所提出的算法中有三个新颖的策略:
通过深度3-D残差卷积神经网络提取光谱空间特征,以降低标签的不确定性。
通过episodes训练网络以学习度量空间,其中来自同一类的样本距离近,来自不同类的样本距离远。
测试样本由学习度量空间中的最近邻居分类器分类
其中最重要的是用训练样本训练deep residual 3-D CNN得到一个metric space。这样的metric space可以泛化到测试集中,对测试集的样本进行分类。模型在训练的时候是不知道测试集是什么样子的,所以这是一个纯半监督学习。
1.2方法:DFSL(Deep Few-shot Learing)
(1)训练过程

从training data set中随机选择一些类,再在每一类中选择support sample(本文中为1个),剩余的部分就是query sample,每一类的sample合在一起变成set就得到了support set和query set。随后将support set和query set输入网络模型中。这样一个训练更新权重的过程为1个episode。
一次episode过程后,在metric space这个

文章提出了一种深度3-D残差卷积神经网络(D-Res-3-D CNN)的深度少量样本学习(DFSL)方法,用于高光谱图像分类。通过episodes训练学习度量空间,使同一类样本接近,不同类样本远离。测试时,使用该空间进行最近邻分类。实验显示,DFSL在样本量有限时优于传统半监督方法。
最低0.47元/天 解锁文章
2249

被折叠的 条评论
为什么被折叠?



