Python TsFresh特征的Java实现——index_mass_quantile

本文详细介绍如何将Python库TsFresh的index_mass_quantile特征转换到Java中,通过步骤解析计算原理并提供相应的Java代码示例。适合时间序列数据处理和Java开发者使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TsFresh(TimeSeries Fresh)是一个Python第三方工具包。它可以方便地对时间序列数据进行处理,获得大量的特征。这些特征可以用以训练分类器,以高效地实现对时间序列数据的分类、识别等。然而,在工程实现时,更多地是采用Java等语言,这需要利用Java实现对TsFresh的特征进行直接计算,故需要对TsFresh的某些特征进行深入地分析,并在Java语言下实现。

特征index_mass_quantile简介

命令格式:index_mass_quantile(x, param)

计算时间序列x的累积分布达到参数字典param中q值时的相对索引值。

参数

  • x:时间序列,数据类型:numpy.ndarray
  • param:用字典\{"q": y\}描述,其中y为float型数据,表示累积分布的门限值。数据类型:list

特征index_mass_quantile计算原理

     1. 对时间序列x取绝对值,得x_abs

     2. 对绝对值序列x_abs求和,得数据总和s

     3. 对绝对值序列x_abs求其累积和,并利用s进行归一化,得时间序列的累积分布mass_centralized

     4. 根据累积分布mass_centralized检索第一个达到q值的索引值,并计算该索引值在时间序列中的相对位置

Java实现

本特征计算相对简单,直接上代码

	public static double index_mass_quantile(double[] x, double q) {
		int n = x.length;
		double[] x_abs = new double[n];
		double s = 0;
		double[] mass_centralized = new double[n];
		for (int idx = 0; idx < n; idx++) {
			x_abs[idx] = Math.abs(x[idx]);
			s = s + x_abs[idx]; 
			mass_centralized[idx] = s;
		}
		
		for (int idx = 0; idx < n; idx++) {
			mass_centralized[idx] = mass_centralized[idx]/s;
		}
		
		// 查找首个累积比例超过q的索引值
		int index = 0;
		for (int idx = 0; idx < n; idx++) {
			if (mass_centralized[idx] >= q) {
				index = idx;
				break;
			}
		}
		// 计算相对索引值
		double result = ((double)(index +1))/((double) n);
		
		return result;
	}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带着地球去浪一浪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值