[NeurIPS 2022] Leveraging Inter-Layer Dependency for Post-Training Quantization

Introduction

  • 作者提出一种端到端的 PTQ 训练策略 Network-Wise Quantization (NWQ),并通过 Annealing Softmax (ASoftmax) 和 Annealing Mixup (AMixup) 改进了 AdaRound,降低了训练收敛难度

Method

  • Activation Regularization (AR). 采用端到端而非 layer/block-wise 优化每个 block 的量化损失
    在这里插入图片描述

  • Annealing Softmax (ASoftmax). 类似于 AdaRound,采用 Adaptive Rounding,但不同的是作者采用 Softmax 而非 Sigmoid,这使得 rounding 范围由 0~1 扩展到了 n n n~ m m m,但相应得训练参数量也增加到了原来的 m − n + 1 m-n+1 mn+1 倍 (不过作者默认采用 n = 0 , m = 1 n=0,m=1 n=0,m=1,所以 ASoftmax 的优势很大可能来自与 AdaRound 的第二点不同,也就是加速模型收敛;如果扩展 m , n m,n m,n,那么随着训练参数量的增加,如果校准数据比较少,模型容易过拟合)
    在这里插入图片描述在这里插入图片描述在这里插入图片描述此外,不同于 AdaRound 采用正则项促使 h ( V ) h(\mathbf V) h(V) 趋近 0/1,而作者认为这个正则项和量化损失其实是冲突的 (量化损失会促使 h ( V ) h(\mathbf V) h(V) 趋近 w s − ⌊ w s ⌋ \frac{\mathbf w}{s}-\lfloor\frac{\mathbf w}{s}\rfloor swsw),这会导致 AdaRound 不容易收敛;对此,作者借助 softmax temperature 帮助模型更好收敛
    在这里插入图片描述其中, τ t \tau^t τt 代表 iter t t t 时刻的 temperature,从 1 线性衰减到 0.01;作者还给出了 V i \mathbf V_i Vi初始化策略 V i = log ⁡ ( σ ′ ( V ) i ) \mathbf V_i=\log(\sigma'(\mathbf V)_i) Vi=log(σ(V)i),这样可以使得初始 rounding 与原始权重尽可能接近,证明可参考附录 A
    在这里插入图片描述

  • Annealing Mixup (AMixup). 采用 mixup 混合全精度模型输出和量化模型输出,作为 AR 中的优化目标 a l a_l al,其中全精度模型输出在 iter t t t 所占比例从 P s = 0.5 P_s=0.5 Ps=0.5 线性衰减到 P e = 0 P_e=0 Pe=0 从而帮助模型更好收敛
    在这里插入图片描述

Experiments

  • Comprehensive Comparison.
    在这里插入图片描述
  • Ablation Study. (1) AR.
    在这里插入图片描述(2) ASoftmax.
    在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述(3) AMixup.
    在这里插入图片描述在这里插入图片描述

References

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值