在进TransUNet的网络结构并添加新的注意力机制时,实验的设计和执行将是验证你改进效果的关键。以下是如何进行实验的建议,以及需要进行的实验类型:
1. 模型架构改进与注意力机制
- 架构改进: 详细描述你对TransUNet结构的改进,包括新增的层、模块或连接方式。解释这些改进如何帮助模型更好地提取特征或提高性能。
- 注意力机制: 介绍你设计或采用的新的注意力机制。说明其工作原理、与现有机制(如Self-Attention)的不同之处,以及其在捕捉全局和局部特征中的作用。
2. 基准实验 (Baseline Comparison)
- 目标: 评估改进后的模型(称为TransUNet+Attention)与原始TransUNet的性能差异。
- 实验设置: 在相同的数据集和超参数设置下,分别训练原始TransUNet和改进后的模型。
- 评估指标: 使用mIoU、F1-score、像素精度等常见指标进行比较。观察改进后的模型在这些指标上的表现是否有提升。
3. 消融实验 (Ablation Study)
- 目标: 分析改进网络结构和新注意力机制的具体贡献。
- 实验设置: 分别去掉改进的网络结构或注意力机制,然后观察性能的变化。例如,你可以只使用改进的网络结构(不添加新注意力机制),或只使用新注意力机制(不改动网络结构)。
- 结果分析: 通过对比这些实验结果,分析各个改进