计算思维 (Computational Thinking)

本篇博客基于MIT的计算机科学和Python编程导论课程,深入探讨了计算思维的核心——抽象、自动化和算法,并阐述如何将这些概念应用于解决问题的实验过程中,包括方案设计、实现、调试、运行和评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

经过两个多月的学习,MIT 6.00.1x 计算机科学和Python编程导论 课程的学习也接近尾声,对于教授在课程中贯穿总结的计算思维摘录如下,以指导接下来的学习

计算思维 (Computational Thinking)

  • Identify or invent useful abstrations
    – Suppressing details, formulating interfaces
  • Formulate solution to a problem as a computational experiment using abstractions
  • Design and construct a sufficiently efficient implementation of experiment
  • Validate experimental setup (i.e., debug it)
  • Run experiment
  • Evaluate results of experiment
  • Repeat as needed

计算思维的三个A (The three A’s of computational thinking)

  • Abstraction
    – Choosing the right abstractions
    – Operating in terms of multiple layers of abstraction simultaneously
    – Defining the relationships the between layers
  • Automation
    – Think in terms of mechanizing our abstractions
    – Mechanization is possible
    • Because we have precise and exacting notations and models
    • There is some “machine” that can interpret our notations
  • Algorithms
    – Language for describing automated processes
    – Also allows abstraction of details
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值