
点击蓝字关注获取更多课程答案
点击文末
获取完整答案
《统计信号处理》是信息与通信工程学科研究生的核心课程,本课程主要学习随机过程基础、参数估计、最佳滤波和信号检测的基本理论,通过随机过程基础的学习,掌握随机过程的基本概念和随机过程通过线性系统分析的基本理论,包括随机过程的定义与分类、统计描述、平稳随机过程和功率谱、线性系统分析、常用时间序列模型、匹配滤波等;通过参数估计理论的学习,掌握参数估计的一般方法、估计的基本准则和性能评估方法;通过最佳滤波理论的学习,掌握最佳滤波的基本概念、卡尔曼滤波的基本理论,熟练掌握卡尔曼滤波算法的推导方法、算法的应用和性能(仿真)评估方法,掌握非线性滤波的基本概念和方法(扩展卡尔曼滤波方法),能够根据实际问题构建信号和观测模型、建立相应的算法、并能用计算机分析(仿真)算法性能。信号检测包括假设检验的基本理论及噪声中信号检测两部分,掌握假设检验(包括复合假设检验)的概念、判决准则,能够针对实际问题构造出假设检验的统计模型、选择合适的判决准则,分析判决的性能。能够将假设检验的数学理论应用于噪声中信号的检测问题中,推导出高斯噪声环境下最佳接收机的结构,掌握高斯噪声中最佳接收机的基本形式、接收机的性能分析方法及最佳信号设计问题。掌握非高斯噪声中信号检测的方法。 通过课程的学习,系统地掌握信号的分析、检测、估计和滤波的基础理论,为今后从事电子与通信领域的科学研究打下坚实的理论基础。目 录
第1章 随机过程的基本概念
1.1 定义与分类
1.2 概率分布与概率密度
1.3 数字特征
1.4 平稳随机过程
1.5 功率谱
1.6 典型随机过程
1.7 信号处理实例-海杂波统计特性分析
第2章 随机过程的线性变换
2.1 线性变换的概念与定理
2.2 随机过程通过线性系统分析
2.3 常用时间序列模型分析
2.4 最佳线性滤波器
2.5 匹配滤波器
2.6 信号处理实例-线性调频信号的匹配滤波
第一章、第二章内容测试
第3章 估计的基本概念与性能评估
3.1 估计理论概述
3.2 参数估计的CRLB
3.3 高斯白噪声中一般信号参数的CRLB
3.4 估计性能的蒙特卡洛仿真
3.5 矢量参数的CRLB(*)
3.6 变换参数的CRLB(*)
3.7 充分统计量(*)
第4章 最小方差无偏估计(*)
4.1 最小方差无偏估计(*)
4.2 线性最小方差无偏估计(*)
4.3 信号处理实例-系统辨识(*)
第5章 最大似然估计
5.1 最大似然估计
5.2 最大似然估计的渐近特性
5.3 信号处理实例-时延估计
5.4 变换参数的最大似然估计(*)
第6章 贝叶斯估计
6.1 贝叶斯估计的一般概念
6.2 最小均方估计
6.3 最大后验概率估计
6.4 信号处理实例-命中概率的贝叶斯估计
第7章 线性贝叶斯估计
7.1 线性最小均方估计
7.2 线性最小均方估计的几何解释
7.3 递推线性最小均方估计
第三至七章内容测试
第8章 线性卡尔曼滤波
8.1 卡尔曼滤波概述
8.2 卡尔曼滤波算法推导-正交投影法
8.3 卡尔曼滤波算法推导-新息法
8.4 计算举例
8.5 应用中的若干问题
8.6 信号处理实例-目标跟踪
8.7 案例研究-机动目标跟踪
第9章 非线性卡尔曼滤波
9.1 扩展卡尔曼滤波
9.2 信号处理实例-目标跟踪
第八、九章内容测试
第10章 统计判决理论
10.1 信号检测的基本概念
10.2 贝叶斯准则
10.3 奈曼-皮尔逊准则
10.4检测性能分析
10.5多元假设检验
第11章 复合假设检验
11.1 复合假设检验的基本概念
11.2 广义似然比检验计算
11.3 局部最大势检验
第12章 高斯噪声中确定性信号检测
12.1 匹配滤波器
12.2 广义匹配滤波器
12.3 最小距离接收机
12.4 未知参量的确定性信号检测
12.5 信号处理实例-正弦信号检测
12.6 雷达CFAR检测
第13章 高斯噪声中随机信号的检测
13.1 随机信号的相关检测:估计器-相关器
13.2 一般高斯信号的检测
13.3 信号处理实例-Swerlling起伏模型的雷达检测性能分析
13.4未知参量的随机信号检测
13.5 线性模型检测
第14章 未知噪声参数及非高斯噪声中信号的检测
14.1 噪声参量未知时的信号检测
14.2 非高斯噪声中的信号检测
14.3 信号处理实例-辐射源个体目标识别
14.4 信号处理实例-基于正交投影的雷达小目标检测
·end·
—如果你的战友也需要这份答案—
—快分享给他们吧—