PCL学习记录-1 Filter-1 PassThrough filter(直通滤波器)功能及用法解析

PCL系列博客主要用来记录学习PointCloudLibrary点云库的过程,以及备忘。

学习资料主要来源为: PCL点云库(Tutorial)+Github博客+ 《点云库PCL学习教程

!Update: 需要注意的是,单个直通滤波器仅仅可以过滤一个坐标轴方向上的点云;

                 例: 当设置pt.setFilterYlimit(-0.5,0.5) 时, 过滤完成后,仅保留y方向上,-0.5~+0.5区域点云,其余舍弃;

                         若在程序中,依次设置了setFilterXlimit ,setFilterYlimit,和setFilterZlimit 的参数, 仅有最后一个Z方向上的滤波生效,其余两个被舍弃;(原因为:直通滤波器,仅能过滤一个方向上的点云                      

引:为什么要进行滤波,以及PCL点云库中,包含的几种常用的滤波方法简介

  在获取点云数据时,由于设备精度、操作者经验、环境因素等带来的影响,以及电磁波衍射特性、被测物体表面性质变化和数据拼接配准操作过程的影响,点云数据中将不可避免地出现一些噪声点。实际应用中除了这些测量随机误差产生的噪声点之外,由于受到外界干扰如视线遮挡、障碍物等因素的影响,点云数据中往往存在着一些离主体点云较远的离散点,即离群点。不同的获取设备点云噪声结构也有不同。

  通过滤波完成的功能还包括孔洞修复、最小信息损失的海量点云数据压缩处理等在点云处理流程中滤波处理作为预处理的第一步,往往对后续处理流程影响很大,只有在滤波预处理中将噪声点、离群点、孔洞、数据压缩等 按照后续需求处理,才能够更好地进行配准、特征提取、曲面重建、可视化

<think>好的,用户想了解如何在PCL 1.8.0中使用直通滤波器,需要找到相关的使用方法和示例。首先,我应该回顾直通滤波器的基本概念,然后结合PCL的文档和引用中的信息来整理步骤。 首先,直通滤波器在点云处理中用于根据某个坐标轴的范围过滤点。用户提到PCL 1.8.0,所以需要确保示例代码和配置与该版本兼容。根据引用中的信息,配置包含目录和链接库是关键步骤,例如引用[5]提到设置包含目录和库目录,这可能需要在项目属性中正确配置。 接下来,我需要查找PCL官方文档或示例代码中的直通滤波器使用部分。通常,直通滤波器的使用包括创建对象、设置参数(如坐标轴、范围)、输入点云和执行滤波。可能还需要处理输入输出,比如从文件读取点云并将结果保存。 用户提供的引用中有关于CMakeLists.txt的配置(引用[3]),这提示用户可能在使用CMake管理项目。因此,在回答中应该包括如何在CMake中正确配置PCL依赖,确保find_package和target_link_libraries正确设置。 另外,引用[4]提到安装问题,虽然与直通滤波器无关,但可能需要注意环境配置是否正确,以避免运行时错误。用户的问题可能涉及代码编译或执行时的常见问题,比如库路径是否正确。 现在需要组织步骤:首先配置项目环境,包括包含目录和库目录;然后编写代码,创建滤波器对象,设置参数,处理点云;最后编译运行。同时,需要提供示例代码,可能参考PCL的示例,并确保语法正确,符合PCL 1.8.0的API。 可能遇到的问题包括点云数据路径错误、未正确链接PCL库,或者在滤波后未正确更新点云尺寸。需要提醒用户检查这些方面。此外,引用[3]中的CMakeLists.txt内容可以作为模板,用户需要根据实际路径调整。 总结回答结构:先介绍直通滤波器的作用,然后分步骤说明配置和使用方法,提供代码示例,最后给出常见问题及解决方法。同时生成相关问题,如其他滤波器、编译问题等,帮助用户扩展知识。</think>### PCL 1.8.0中直通滤波器的使用方法 直通滤波器PassThrough Filter)是点云处理中常用的滤波方法,用于根据指定坐标轴的数值范围裁剪点云。以下是基于PCL 1.8.0的实现步骤和示例代码: --- #### **1. 环境配置** 在项目中使用PCL直通滤波器前,需确保正确配置开发环境: - **包含目录**:添加PCL头文件路径,例如: `C:\Program Files\PCL 1.8.0\include\pcl-1.8` 和第三方库路径(如Eigen、Boost等)[^5]。 - **库目录**:链接PCL库文件,例如: `C:\Program Files\PCL 1.8.0\lib`。 - **CMake配置**:参考以下`CMakeLists.txt`模板: ```cmake cmake_minimum_required(VERSION 2.6) project(pcl_passthrough) find_package(PCL 1.8 REQUIRED) include_directories(${PCL_INCLUDE_DIRS}) link_directories(${PCL_LIBRARY_DIRS}) add_executable(passthrough_example passthrough_example.cpp) target_link_libraries(passthrough_example ${PCL_LIBRARIES}) ```[^3] --- #### **2. 代码实现示例** ```cpp #include <pcl/point_types.h> #include <pcl/filters/passthrough.h> #include <pcl/io/pcd_io.h> int main() { // 读取点云数据 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile("input_cloud.pcd", *cloud); // 创建直通滤波器对象 pcl::PassThrough<pcl::PointXYZ> pass; pass.setInputCloud(cloud); pass.setFilterFieldName("z"); // 设置滤波坐标轴(例如Z轴) pass.setFilterLimits(0.0, 1.0); // 设置保留范围 [0.0, 1.0] pass.setFilterLimitsNegative(false); // false表示保留范围内,true表示保留范围外 // 执行滤波 pcl::PointCloud<pcl::PointXYZ>::Ptr filtered_cloud(new pcl::PointCloud<pcl::PointXYZ>); pass.filter(*filtered_cloud); // 保存结果 pcl::io::savePCDFile("filtered_cloud.pcd", *filtered_cloud); return 0; } ``` --- #### **3. 参数说明** - `setFilterFieldName("z")`:选择过滤的坐标轴(可选`x`、`y`、`z`)。 - `setFilterLimits(min, max)`:设置保留的数值范围。 - `setFilterLimitsNegative(true/false)`:控制保留范围的内外区域。 --- #### **4. 常见问题** 1. **点云数据未加载**:检查文件路径是否正确,确保`input_cloud.pcd`存在。 2. **编译错误**:确认PCL库版本为1.8.0,且所有依赖项(如Boost、Eigen)已正确链接。 3. **滤波后无输出**:检查滤波范围是否合理,或尝试调整`setFilterLimits`参数。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值