An Efficient Sampling-based Method for Online Informative Path Planning in Unknown Environments

本文提出一种基于RRT*启发的在线信息路径规划算法,通过持续扩展候选轨迹树并重新布线节点,维持树结构并优化中间路径。该方法解决了传统算法中计算资源浪费和路径非最优的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

An Efficient Sampling-based Method for Online Informative Path Planning in Unknown Environments

Abstract

new RRT*- inspired online informative path planning algorithm,continuously expands a single tree of candidate trajectories and rewires nodes to maintain the tree and refine intermediate
propose a novel TSDF-based 3D reconstruction gain and cost-utility formulation

Introduction

传统的基于采样的在线informative path plan,通常是把采样的轨迹存储到树中,但是只会执行第一步,这样有两个弊端

  • 树的其他部分都被丢弃了,因为只有最好的branch 是被执行的,这样的话会造成计算量特别大;
  • 由于倾向于选择局部最优情况,会导致路径非最优,或者陷入到dead-end中;
    为了解决这两个问题,采用的方法是:根据节点的用途重新布线,这样未执行的节点及其子树将保持活动状态。 结合自适应更新策略,可以遍历不断增长的树并对其进行维护
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值