论文阅读 Receding Horizon “Next–Best–View” Planner for 3D Exploration

本文介绍了使用无人机对未知环境进行自主探索的方法。采用滚动优化的Next - Best - View框架,在在线计算的随机树中找最佳分支执行。分析了动力学约束、定位不确定性等问题,提出基于采样的滚动优化规划框架,通过深度相机或雷达建图,规划路径并计算信息增益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Receding Horizon “Next–Best–View” Planner for 3D Exploration


这是eth发表在ICRA2016上的

Abstract

使用无人机对未知环境进行自主的探索
autonomous exploration of unknown space using aerial robotic platforms
使用的框架是 滚动优化的Next-Best-View
在线计算的随机树中找到最好的branch,评价的标准是 可以被探索的未被建图的数量
只有最好的branch会被执行 Only the first edge of this branch is executed at every planning step
可以实现完整的探索 可以处理大的环境和复杂的问题

Introduction

现有处理unknown 并且online的大多是reactive 也就是反应式的
建图部分: map the environment in an occupancy map from depth image input
建立一个有限迭代随机树 RRT each branch is evaluated for the amount of unmapped space that can be mapped 只有第一条边才会执行

related work

frontier-based : maximize the extension of the horizon of known space considering an onboard sensor
another method : samples possible viewpoints in the whole known free space instead of just at the frontiers
这个方法也是在已知的free空间中去采样几个next-best-view的点 和之前的不同 这些采样的点会以树的形式存储 树的edge就是到该点的路径 只有最好的edge被执行

PROBLEM DESCRIPTION

  • vehicle dynamic constraints 动力学约束
  • localization uncertainty 定位的不确定性
  • limitations of the employed sensor system with which the space is explored 传感器探测范围有限
    所以需要提高系统的鲁棒性

PROPOSED APPROACH

a sampling–based receding horizon path planning paradigm 基于采样的滚动优化规划框架
通过深度相机或者雷达建图 occupancy map free occupied or unmapped
路径只在free中规划
从configuration点通过传感器观测到的地图中未被建图的部分Visible(M, ξ)
直线direct line 不会穿过被占用的栅格 并且符合传感器模型(主要是FOV和最大距离maximum range)
从当前位置建立rrt 最后的树包含n个节点 边是无障碍的路径
一个节点n的质量 或者说收集的信息增益Gain(n)表示方法:
the summation of the unmapped volume that can be explored at the nodes along the branch
沿着分支可以探索的未建图的体积总和
在这里插入图片描述
λ是路径成本的惩罚量
每次重规划之后,最好的节点会被提取,到节点的边会被执行 nbest是具有gain最高的点
the remainder of the best branch 最好分支的剩下的部分会被用来做下次重规划过程中的初始化
再根据更新后的地图 重新计算information gain

对于无人机来说 状态量有四个 x y z yaw
当慢速操作时 直线可以认为是跟踪的参考线
参考线的路径成本用欧氏距离衡量
生成参考距离时采样需要考虑最大速度和转弯率
计算gain时距离会比传感器的距离小一些 这样可以保证次优观测条件的鲁棒性 也可以提高计算能力

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值