论文整理Actively Mapping Industrial Structures with Information Gain-Based Planning on a Quadruped Robot

Actively Mapping Industrial Structures with Information Gain-Based Planning on a Quadruped Robot

问题

这篇论文主要考虑的问题是如果让机器人自主对特定的环境建图,把感知-规划-控制结合在一起
场景是一个工业模型周围的地形会比较复杂
用的平台是四足ANYmal,所以规划的时候需要考虑四足的特性
用的方法是迭代的选择next best view(NBV),选择的时候是先生成一系列候选点,然后根据这两个方面来评估候选点选出最优:

  • expected information gain
  • the cost of reaching the candidate

相关背景

对环境的描述分为surface mesh 或者是voxel space
本文里是用voxel来描述环境的,VI是用Occlusion Aware或者Rear Side En- tropy计算的
用OctoMap来存储地图的占用概率

方法

在这里插入图片描述处理好的雷达信息还有机器人的位姿来更新octomap里的占据概率
还会用雷达生成一个elevation map,这个地图范围只有10m,仅仅用来局部规划
在elevation map中用RRT来生成一系列scan candidate,也就是候选的位置,然后对其进行评估
utility function对其评估,选择最好的作为下一个要到的点
用RRT*到这个点之后,继续用RRT来生成新的一系列scan candidate,然后再对这些位置用utility function来评估,这是一个迭代的过程
在这里插入图片描述

  • Gc:如果用这个位姿,那会得到的信息增益
  • Pc:惩罚已经经过的或者离物体很近的位姿
  • Tc: 到所给定位姿需要的cost

Volumetric Information (VI) Gain

从一个假设的位姿有一组射线,然后估计期望信息增益
c是候选位置,Rc是从该位置的一组射线,r是其中一条射线,Vr是这条射线达到终点穿过的所有格子,Gc是每个格子的增益I的总和
在这里插入图片描述

  • Occlusion Aware Ioa: 遮挡感知,从格子可见性考虑,在这个位置能降低不确定性的有效性
    根据格子的占用概率,计算格子的熵,再计算Ioa
    在这里插入图片描述

  • Rear Side Entropy Irse:后面格子的熵 基于Ioa 但主要关注背后的格子
    在这里插入图片描述

position cost

在这里插入图片描述

traversal cost

考虑地形的粗糙度

实验

**在这里插入图片描述**类似这样,在一个点先用RRT生成一系列候选点,上面的数字是用utility function 评估的出的,选择最大的作为下一个要到达的点,比如图中要往右上角走,用RRT*生成到这个点的路径

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值