Actively Mapping Industrial Structures with Information Gain-Based Planning on a Quadruped Robot
问题
这篇论文主要考虑的问题是如果让机器人自主对特定的环境建图,把感知-规划-控制结合在一起
场景是一个工业模型周围的地形会比较复杂
用的平台是四足ANYmal,所以规划的时候需要考虑四足的特性
用的方法是迭代的选择next best view(NBV),选择的时候是先生成一系列候选点,然后根据这两个方面来评估候选点选出最优:
- expected information gain
- the cost of reaching the candidate
相关背景
对环境的描述分为surface mesh 或者是voxel space
本文里是用voxel来描述环境的,VI是用Occlusion Aware
或者Rear Side En- tropy
计算的
用OctoMap来存储地图的占用概率
方法
处理好的雷达信息还有机器人的位姿来更新octomap里的占据概率
还会用雷达生成一个elevation map,这个地图范围只有10m,仅仅用来局部规划
在elevation map中用RRT来生成一系列scan candidate,也就是候选的位置,然后对其进行评估
用utility function对其评估,选择最好的作为下一个要到的点
用RRT*到这个点之后,继续用RRT来生成新的一系列scan candidate,然后再对这些位置用utility function来评估,这是一个迭代的过程
- Gc:如果用这个位姿,那会得到的信息增益
- Pc:惩罚已经经过的或者离物体很近的位姿
- Tc: 到所给定位姿需要的cost
Volumetric Information (VI) Gain
从一个假设的位姿有一组射线,然后估计期望信息增益
c是候选位置,Rc是从该位置的一组射线,r是其中一条射线,Vr是这条射线达到终点穿过的所有格子,Gc是每个格子的增益I的总和
-
Occlusion Aware Ioa: 遮挡感知,从格子可见性考虑,在这个位置能降低不确定性的有效性
根据格子的占用概率,计算格子的熵,再计算Ioa
-
Rear Side Entropy Irse:后面格子的熵 基于Ioa 但主要关注背后的格子
position cost
traversal cost
考虑地形的粗糙度
实验
类似这样,在一个点先用RRT生成一系列候选点,上面的数字是用utility function 评估的出的,选择最大的作为下一个要到达的点,比如图中要往右上角走,用RRT*生成到这个点的路径