python语音合成 标贝_tacotronV2 + wavernn 实现中文语音合成(Tensorflow + pytorch)

本文介绍了如何利用TacotronV2和WaveRNN结合标贝中文语音数据集进行语音合成。通过预处理、训练和微调模型,实现了高质量的中文语音合成服务,并探讨了对长句的建模和说话人转换。最后,还涉及了Tensorflow-GPU 1.14.0环境下的服务部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TacotronV2 + WaveRNN

开源中文语音数据集标贝(女声)训练中文TacotronV2,实现中文到声学特征(Mel)转换的声学模型。在GTA模式下,利用训练好的TacotronV2合成标贝语音数据集中中文对应的Mel特征,作为声码器WaveRNN的训练数据。在合成阶段,利用TactornV2和WaveRNN合成高质量、高自然度的中文语音。

从THCHS-30任选一个speaker的语音数据集,微调TacotronV2中的部分参数,实现说话人转换。

Tensorflow serving + Flask 部署TacotronV2中文语音合成服务。

由于TacotronV2TacotronV2中采用Location sensitive attention,对长句字的建模能力不好(漏读、重复),尝试了GMM attention、Discrete Graves Attentionissue、Forward attention,能有效地解决对长句的建模能力,加快模型收敛速度。

tensorflow-gpu的版本为1.14.0

测试语音合成的效果(确保相关的库已经安装)

git clone https://github.com/lturing/tacotronv2_wavernn_chinese.git

cd tacotronv2_wavernn_chinese

python tacotron_synthesize.py --text '现在是凌晨零点二十七分,帮您订好上午八点的闹钟。'

#合成的wav、attention align等在./tacotron_inference_output下

#由于在inference阶段,模型中的dropout没有关闭,相同的输入text,合成的wav的韵律等有轻微的不同

训练TacotronV2模型

训练数据集预处理

中文标点符号处理

对于中文标点符号,只保留',。?!'四种符号,其余符号按照相应规则转换到这四个符号之一。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值