
一、矩阵相关概念
1.1 Def
设方阵. 任取
的
行、
列所相交的
个点,保持相对顺序形成新小方阵
. 则称
为
的
阶子式.
1.2 Def
设方阵. 任取
的
行. 再取与被取行号相同列号
列所相交的
个点,保持相对顺序形成新小方阵
(即所有点关于主对角线对称). 则称
为
的
阶主子式.
1.3 Def
设方阵. 取
的前
行, 再取前
列所相交的
个点,保持相对顺序形成新小方阵
(即
到
框定的方阵). 则称
为
的
阶顺序主子式.
以下概念与最优化无直接关系,但为了与上述概念区分,一并列出.
1.4 Def 余子式(Cofactor)
设方阵. 划去元
所在的第
行与第
列各项,剩下
不改变原来的顺序所构成的
行列式阶
称为
在
的余子式。
1.5 Def 代数余子式(Algebraic Cofactor)
设方阵. 称
为
在
的代数余子式.
1.6 Def 伴随矩阵(Adjugate Matrix)
设方阵. 称同形矩阵
(代数余子式阵的转置)为
的伴随矩阵. 若
可逆,则有
.
二、实对称阵的正负定、不定、半正负定性判别
2.1 Prop 对称阵:正、负定; 不定; 半、正负定矩阵判断
设为
一、行列式法阶实对称阵,则按如下方法判断:
充要条件:
(1) 若顺序主子式的所有
为正定矩阵;
(2) 若顺序主子式从小到大符号为负、正、负...交替的
为负定矩阵;
(3) 若所有主子式的
为半正定矩阵;
(4) 若所有奇数阶主子式的
所有偶数阶主子式, 同时
为半负定矩阵
筛选方法:
(1) 先按顺序主子式判断是否满足正定、负定充要条件;
(2) 若顺序主子式被严格违背, 则一定为不定矩阵(一定不是极值);
(3) 若顺序主子式弱满足,则检查余下主子式是否满足半正、负定充要条件; 不满足则为不定矩阵/满足则为半正、负定矩阵. 二、特征值、主元充要条件
(1) 若的所有特征值
为正(负)定矩阵;
(2) 若的所有特征值
为半正(负)定矩阵;
(3) 实对称阵三、正定、半正定充要条件消元后所有主元(pivot)与特征值符号一致.
(1) 若存在列满秩矩阵, 使得
为正定矩阵;
(2) 若存在一般矩阵, 使得
为半正定矩阵.
三、无约束最优化: 二阶充分条件
3.1 Thm 无约束最优化:内点二阶充分条件(S.O.C)
设.
则当为
的驻点(
)且满足:
(1)为正定矩阵
为极小值点;
(2)为负定矩阵
为极大值点;
(3)为不定矩阵
既不是极大值点也不是极小值点(鞍点Saddle Point)
(4)为半正、负定矩阵
无法判断(需要更高阶条件).
四、约束最优化:二阶充分条件
4.1 Thm 约束最优化:二阶充分条件(S.O.C)
目标函数:
不等条件:
等式条件:
当满足:
(1) Karush Kuhn Tucker一阶条件;
(2) 记KKT的解中不等条件中binding的条件, 所有等式条件
的雅可比矩阵堆叠成
. 若
满足
的可行方向上,
,
为极小(大)值点.
4.2 Prop 加边海森矩阵正、负定判别
满足
的可行方向
加边海森矩阵(Bordered Hessian)为上, 记
. (默认
, 否则等式约束条件过多,自变量无自由度)
(1)从第
行(包含此行)为第一个顺序主子式的右下角,以此开始检查所有后续顺序主子式符号均为
,共检查
个顺序主子式;
(2)从第
行(包含此行)为第一个顺序主子式的右下角,以此开始检查所有后续顺序主子式符号为: 以
开始的交替正负,共检查
个顺序主子式.