判断kkt条件的例题_最优化:二阶条件总结

本文深入探讨了矩阵相关概念,包括余子式、代数余子式和伴随矩阵,并详细阐述了实对称阵的正负定性判断。进一步,文章介绍了无约束与约束最优化问题的二阶充分条件,特别是KKT条件的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

bd5d98f73b722c5e11442c9806fb27ae.png

一、矩阵相关概念

1.1 Def

阶子式(
-th order minor)
设方阵
. 任取
行、
列所相交的
个点,保持相对顺序形成新小方阵
. 则称
阶子式.

1.2 Def

阶主子式(
-th order principle minor)
设方阵
. 任取
行. 再取与被取行号相同列号
列所相交的
个点,保持相对顺序形成新小方阵
(即所有点关于主对角线对称). 则称
阶主子式.

1.3 Def

阶顺序主子式(
-th order leading principle minor)
设方阵
. 取
的前
行, 再取前
列所相交的
个点,保持相对顺序形成新小方阵
(即
框定的方阵). 则称
阶顺序主子式.
以下概念与最优化无直接关系,但为了与上述概念区分,一并列出.

1.4 Def 余子式(Cofactor)

设方阵
. 划去元
所在的第
行与第
列各项,剩下
不改变原来的顺序所构成的
行列式
称为
的余子式。

1.5 Def 代数余子式(Algebraic Cofactor)

设方阵
. 称
的代数余子式.

1.6 Def 伴随矩阵(Adjugate Matrix)

设方阵
. 称同形矩阵
(代数余子式阵的转置)为
的伴随矩阵. 若
可逆,则有
.

二、实对称阵的正负定、不定、半正负定性判别

2.1 Prop 对称阵:正、负定; 不定; 半、正负定矩阵判断

阶实对称阵,则按如下方法判断:
一、行列式法
充要条件:
(1) 若
的所有
顺序主子式
为正定矩阵;

(2) 若
顺序主子式从小到大符号为负、正、负...交替
为负定矩阵;

(3) 若
所有主子式
为半正定矩阵;

(4) 若
所有奇数阶主子式
, 同时
所有偶数阶主子式
为半负定矩阵

筛选方法:
(1) 先按顺序主子式判断是否满足正定、负定充要条件;
(2) 若顺序主子式被严格违背, 则一定为不定矩阵(一定不是极值);
(3) 若顺序主子式弱满足,则检查余下主子式是否满足半正、负定充要条件; 不满足则为不定矩阵/满足则为半正、负定矩阵. 二、特征值、主元充要条件
(1) 若
的所有特征值
为正(负)定矩阵;

(2) 若
的所有特征值
为半正(负)定矩阵;

(3) 实对称阵
消元后所有主元(pivot)与特征值符号一致.
三、正定、半正定充要条件
(1) 若存在列满秩矩阵
, 使得
为正定矩阵;

(2) 若存在一般矩阵
, 使得
为半正定矩阵.

三、无约束最优化: 二阶充分条件

3.1 Thm 无约束最优化:内点二阶充分条件(S.O.C)

.

则当
的驻点(
)且满足:

(1)
为正定矩阵
为极小值点;

(2)
为负定矩阵
为极大值点;

(3)
为不定矩阵
既不是极大值点也不是极小值点(鞍点Saddle Point)

(4)
为半正、负定矩阵
无法判断(需要更高阶条件).

四、约束最优化:二阶充分条件

4.1 Thm 约束最优化:二阶充分条件(S.O.C)

目标函数:

不等条件:

等式条件:

满足:

(1) Karush Kuhn Tucker一阶条件;
(2) 记KKT的解中不等条件中binding的条件
, 所有等式条件
的雅可比矩阵堆叠成
. 若
满足
的可行方向上,
,
为极小(大)值点.

4.2 Prop 加边海森矩阵正、负定判别

满足
的可行方向
上, 记
加边海森矩阵(Bordered Hessian)为
. (默认
, 否则等式约束条件过多,自变量无自由度)

(1)
从第
行(包含此行)为第一个顺序主子式的右下角,以此开始检查所有后续顺序主子式符号均为
,共检查
个顺序主子式;

(2)
从第
行(包含此行)为第一个顺序主子式的右下角,以此开始检查所有后续顺序主子式符号为: 以
开始的交替正负,共检查
个顺序主子式.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值