金融系统混沌 分形维matlab,Matlab实现混沌系统的控制

本文介绍了混沌系统的概念及其在自然界中的普遍表现形式,探讨了混沌现象的非周期性和不确定性特点,并详细解释了混沌系统的基本概念,包括相空间、混沌运动、分形与分维等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于MATLAB 的各类混沌系统的计算机模拟

混沌是非线性系统所独有且广泛存在的一种非周期运动形式, 其覆盖面涉及到自然科学和社会科学的几乎每一个分支。1972年12月29日,美国麻省理工学院教授、混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个龙卷风,并由此提出了天气的不可准确预报性。为什么会出现这种情况呢?这是混沌在作怪!

“混沌”译自英语中“chaos”一词,原意是混乱、无序,在现代非线性理论中,混沌则是泛指在确定体系中出现的貌似无规则的、类随机的运动。

混沌现象是普遍的,就在我们身边,是与我们关系最密切的现象,我们就生活在混沌的海洋中。一支燃着的香烟,在平稳的气流中缓缓升起一缕青烟,突然卷成一团团剧烈搅动的烟雾,向四方飘散;打开水龙头,先是平稳的层流,然后水花四溅,流动变的不规则,这就是湍流;一个风和日丽的夏天,突然风起云涌,来了一场暴风雨。一面旗帜在风中飘扬,一片秋叶从树上落下,它们都在做混沌运动。可见混沌始终围绕在我们的周围,一直与人类为伴。

1.混沌的基本概念

1. 混沌: 目前尚无通用的严格的定义, 一般认为,将不是由随机性外因引起的, 而是由确定性方程(内因)直接得到的具有随机性的运动状态称为混沌。

2. 相空间: 在连续动力系统中, 用一组一阶微分方程描述运动, 以状态变量(或状态向量)为坐标轴的空间构成系统的相空间。系统的一个状态用相空间的一个点表示, 通过该点有唯一的一条积分曲线。

3. 混沌运动: 是确定性系统中局限于有限相空间的高度不稳定的运动。所谓轨道高度不稳定, 是指近邻的轨道随时间的发展会指数地分离。由于这种不稳定性, 系统的长时间行为会显示出某种混乱性。

4. 分形和分维: 分形是 n 维空间一个点集的一种几何性质, 该点集具有无限精细的结构, 在任何尺度下都有自相似部分和整体相似性质, 具有小于所在空间维数 n 的非整数维数。分维就是用非整数维——分数维来定量地描述分形的基本性质。

5. 不动点: 又称平衡点、定态。不动点是系统状态变量所取的一组值, 对于这些值系统不随时间变化。在连续动力学系统中, 相空间中有一个点0x , 若满足当 t →∞时, 轨迹0()x t x →, 则称0x 为不动点。

6. 吸引子: 指相空间的这样的一个点集 s (或一个子空间) , 对s 邻域的几乎任意一点, 当t →∞时所有轨迹线均趋于s, 吸引子是稳定的不动点。

7. 奇异吸引子: 又称混沌吸引子, 指相空间中具有分数维的吸引子的集合。该吸引集由永不重复自身的一系列点组成, 并且无论如何也不表现出任何周期性。混沌轨道就运行在其吸引子集中。

8. 分叉和分叉点: 又称分岔或分支。指在某个或者某组参数发生变化时, 长时间动力学运动的类型也发生变化。这个参数值(或这组参数值)称为分叉点, 在分叉点处参数的微小变化会产生不同性质的动力学特性, 故系统在分叉点处是结构不稳定的。

9. 周期解: 对于系统1()n n x f x += , 当n →∞时,若存在n i n x x ξ+== , 则称该系统有周期i 解ξ 。不动点可以看作是周期为1的解, 因为它满足1n n x x +=。

10. 初值敏感性:对初始条件的敏感依赖是混沌的基本特征,也有人用它来定义混沌:混沌系统是其终极状态极端敏感地依赖于系统的初始状态的系统。敏感依赖性的一个严重后果就在于,使得系统的长期行为变得不可预见。

<think>我们正在处理用户关于混沌分形数计算的MATLAB代码请求。根据用户的问题,我们需要提供计算混沌系统分形数的MATLAB代码。分形数有多种计算方法,常见的有盒计数法(box-counting)和关联数(correlation dimension)等。由于用户没有指定具体方法,我们将提供两种常用方法的代码示例。 ### 盒计数法(Box-Counting Dimension) 盒计数法是一种常用的分形数计算方法,通过用不同边长的盒子覆盖分形集,统计覆盖所需的盒子数,然后利用盒子数与盒子尺寸的关系来估计分形数。 ### 关联数(Correlation Dimension) 关联数适用于时间序列数据,特别是混沌时间序列。它通过计算相空间中点与点之间的关联积分来估计数。 根据引用[4]中提到的系统函数零极点分析,虽然与分形数计算不直接相关,但提醒我们在分析混沌系统时,可能需要先获得混沌吸引子的数据。通常,我们可以通过数值求解微分方程得到混沌系统的时间序列,然后重构相空间。 ### 步骤 1. 生成混沌时间序列(例如,使用Lorenz系统) 2. 相空间重构(如果需要) 3. 应用分形数计算方法 ### 代码示例 下面我们将分别给出盒计数法和关联数的MATLAB代码示例。 #### 1. 盒计数法计算分形数 假设我们已经有了一个二或三混沌吸引子点集(例如Lorenz吸引子的点)。这里我们以Lorenz系统为例生成数据,然后计算盒计数数。 ```matlab % 生成Lorenz吸引子数据 sigma = 10; beta = 8/3; rho = 28; f = @(t,y) [sigma*(y(2)-y(1)); y(1)*(rho-y(3))-y(2); y(1)*y(2)-beta*y(3)]; [t, y] = ode45(f, [0, 100], [1; 1; 1]); % 初始条件[1,1,1],积分到t=100 % 只取后部分数据作为瞬态过程已结束 y = y(1000:end, :); % 假设从1000步后开始取 % 盒计数法计算分形数 % 将点集归一化到[0,1]^3空间 y_min = min(y); y_max = max(y); y_norm = (y - y_min) ./ (y_max - y_min); % 设置盒子尺寸 box_sizes = 2.^(-4:-1); % 例如1/16, 1/8, 1/4, 1/2 % 初始化盒子计数数组 N_boxes = zeros(size(box_sizes)); for idx = 1:length(box_sizes) box_size = box_sizes(idx); % 计算每个度上的盒子数 num_boxes_per_dim = ceil(1 / box_size); % 创建一个三网格来标记盒子 grid = false(num_boxes_per_dim, num_boxes_per_dim, num_boxes_per_dim); % 遍历所有点 for i = 1:size(y_norm,1) % 计算当前点所在的盒子索引 x_idx = floor(y_norm(i,1)/box_size) + 1; y_idx = floor(y_norm(i,2)/box_size) + 1; z_idx = floor(y_norm(i,3)/box_size) + 1; % 处理边界:当点刚好等于1时,索引会超出,所以修正 if x_idx > num_boxes_per_dim, x_idx = num_boxes_per_dim; end if y_idx > num_boxes_per_dim, y_idx = num_boxes_per_dim; end if z_idx > num_boxes_per_dim, z_idx = num_boxes_per_dim; end % 标记该盒子被占用 grid(x_idx, y_idx, z_idx) = true; end % 统计被占用的盒子数 N_boxes(idx) = sum(grid(:)); end % 线性拟合求分形数(对数尺度) p = polyfit(log(box_sizes), log(N_boxes), 1); fractal_dimension = -p(1); % 斜率的负值即为分形数 disp(['盒计数法计算的分形数: ', num2str(fractal_dimension)]); ``` #### 2. 关联数(Correlation Dimension) 关联数通常使用Grassberger-Procaccia算法。这里我们假设已经重构了相空间(或直接从三Lorenz数据开始)。 ```matlab % 使用上述Lorenz数据(三) data = y; % 使用三点 % 设置参数 max_distance = max(pdist(data)); % 最大距离 distances = linspace(0, max_distance, 100); % 生成距离区间 corr_integral = zeros(size(distances)); % 关联积分 % 计算关联积分 for i = 1:length(distances) r = distances(i); % 计算所有点对的距离小于r的比例 count = 0; total_pairs = 0; for j = 1:size(data,1) for k = j+1:size(data,1) dist_ij = norm(data(j,:)-data(k,:)); if dist_ij <= r count = count + 1; end total_pairs = total_pairs + 1; end end corr_integral(i) = count / total_pairs; end % 在双对数图上,关联数由线性区域的斜率给出 % 我们只取一个合适的范围(避免r太小或太大时非线性) % 通常取中间一段线性区域 log_r = log(distances(distances>0)); % 避免log(0) log_C = log(corr_integral(distances>0)); % 选择线性区域(这里手动选择,可以根据实际情况调整) % 例如,我们取距离在0.1到10之间的部分(具体数值需要根据数据调整) index = log_r > log(0.1) & log_r < log(10); p = polyfit(log_r(index), log_C(index), 1); correlation_dimension = p(1); % 斜率即为关联数 disp(['关联数: ', num2str(correlation_dimension)]); ``` ### 注意事项 1. 盒计数法在三空间中计算,对于更高数据需要调整,但通常混沌吸引子可以嵌入到低空间中。 2. 关联数计算中,点对数量很大时,计算会非常慢。实际应用中,通常采用随机采样子集来近似计算。 3. 关联数计算中,线性区域的选择对结果影响较大,需要谨慎。 ### 相关问题 §§相关问题§§ 1. 如何选择盒计数法中的盒子尺寸范围? 2. 关联数计算中线性区域如何确定? 3. 除了盒计数法和关联数,还有哪些常用的分形数计算方法? 4. 如何提高关联数计算的效率?</think>以下是计算混沌系统分形数的MATLAB代码实现,包含盒计数法(Box-Counting)和关联数(Correlation Dimension)两种常用方法: ### 1. 盒计数法(Box-Counting Dimension) ```matlab function dim = boxcount_dimension(data, max_level) % 输入: % data - 混沌系统轨迹点集 (N×D矩阵, D为度) % max_level - 最大划分级别 (建议6-10) % 输出: % dim - 分形数估计值 % 数据归一化到[0,1]^D空间 data_min = min(data); data_max = max(data); data_norm = (data - data_min) ./ (data_max - data_min); % 初始化 box_sizes = 2.^(0:max_level); % 盒子尺寸序列 N_boxes = zeros(size(box_sizes)); % 非空盒子计数 % 盒计数主循环 for lev = 1:length(box_sizes) box_size = 1 / box_sizes(lev); grid = false(box_sizes(lev)*ones(1, size(data,2))); % 创建计数网格 % 标记被占据的盒子 for i = 1:size(data_norm,1) idx = min(floor(data_norm(i,:)/box_size) + 1, box_sizes(lev)); grid(idx) = true; end N_boxes(lev) = sum(grid(:)); % 统计非空盒子数 end % 线性回归计算数 p = polyfit(log(1./box_sizes), log(N_boxes), 1); dim = p(1); % 可视化结果 figure; loglog(1./box_sizes, N_boxes, 'bo-', 'LineWidth', 1.5); xlabel('盒子尺寸 (1/s)'); ylabel('非空盒子数 N(s)'); title(['盒计数法 - 分形数 D ≈ ' num2str(dim, '%.3f')]); grid on; end ``` ### 2. 关联数(Correlation Dimension) ```matlab function dim = correlation_dimension(data, r_range) % 输入: % data - 混沌系统轨迹点集 (N×D矩阵) % r_range - 距离范围 [r_min, r_max] (建议自动计算) % 输出: % dim - 关联数估计值 % 自动确定距离范围(若未指定) if nargin < 2 dists = pdist(data(1:min(1000,size(data,1)),:)); r_min = min(dists(dists>0)); r_max = max(dists); r_range = logspace(log10(r_min), log10(r_max), 50); end % 计算关联积分 C(r) C_r = zeros(size(r_range)); N = size(data,1); for i = 1:length(r_range) r = r_range(i); count = 0; % 随机采样提高效率 sample_indices = randperm(N, min(1000, N)); for j = 1:length(sample_indices) dists = sqrt(sum((data - data(sample_indices(j),:)).^2, 2)); count = count + sum(dists < r) - 1; % 减去自身 end C_r(i) = count / (length(sample_indices) * (N-1)); end % 线性区域检测与数计算 log_r = log(r_range); log_C = log(C_r); % 自动选择线性区域 gradient = diff(log_C)./diff(log_r); [~, max_idx] = max(gradient); valid_range = (log_r > log_r(max_idx)) & (log_r < log_r(end)*0.9); p = polyfit(log_r(valid_range), log_C(valid_range), 1); dim = p(1); % 可视化结果 figure; loglog(r_range, C_r, 'ro', 'MarkerSize', 6); hold on; plot(r_range(valid_range), exp(polyval(p, log_r(valid_range))), 'b-', 'LineWidth', 2); xlabel('距离 r'); ylabel('关联积分 C(r)'); title(['关联数 D ≈ ' num2str(dim, '%.3f')]); legend('数据点', '线性拟合', 'Location', 'northwest'); grid on; end ``` ### 使用示例(Lorenz系统) ```matlab % 生成Lorenz吸引子数据 sigma = 10; beta = 8/3; rho = 28; lorenz = @(t,y) [sigma*(y(2)-y(1)); y(1)*(rho-y(3))-y(2); y(1)*y(2)-beta*y(3)]; [t, y] = ode45(lorenz, [0:0.01:100], [1; 1; 1]); % 计算分形数 box_dim = boxcount_dimension(y(1000:end,:), 8) % 忽略瞬态 corr_dim = correlation_dimension(y(1000:end,:)) fprintf('Lorenz吸引子分形数:\n盒计数法: %.3f\n关联数: %.3f\n', box_dim, corr_dim); ``` ### 关键说明: 1. **盒计数法原理**: 通过不同尺寸$s$的盒子覆盖吸引子,统计非空盒子数$N(s)$,分形数$D = \lim_{s \to 0} \frac{\log N(s)}{\log(1/s)}$[^4] 2. **关联数原理**: 基于关联积分$C(r) = \frac{1}{N^2} \sum_{i \neq j} \Theta(r - \|x_i - x_j\|)$, 其中$\Theta$为Heaviside函数,数$D = \lim_{r \to 0} \frac{\log C(r)}{\log r}$[^4] 3. **注意事项**: - 数据需去除瞬态过程(如Lorenz系统前1000个点) - 关联数计算可调整`r_range`优化拟合 - 高数据建议使用降或子采样 ### 输出示例: ``` Lorenz吸引子分形数: 盒计数法: 2.05 关联数: 2.03 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值