推荐五大AI+MCP自动化测试工具!

在当今快速发展的软件行业,自动化测试已成为提升开发效率和产品质量的关键。今天,我们将给大家推荐五大MCP自动化测试工具,助你在自动化测试领域更进一步。

1、MCP介绍

首先,你得知道,MCP是什么?
简单来说,MCP(Model Control Protocol)是一种允许AI模型与外部工具和服务进行交互的协议,它让AI模型能够超越纯文本生成的能力限制,实现对外部世界的感知和操作。通过MCP,自动化测试工具可以更加智能化、更自动化。

2、五大MCP自动化测试工具推荐

2.1 Playwright MCP

由微软官方出品,利用Playwright实现浏览器自动化,通过读取网页的结构化访问树让LLM与网页交互,无需截图或计算机视觉模型。该方案轻量快速,并保证交互操作的确定性。

  • 使用场景:自动化网页操作,如导航网站、填写表单、提取页面中的结构化数据,以及由LLM驱动的自动化测试或作为通用的网页代理执行复杂交互。

  • 项目地址: https://github.com/microsoft/playwright-mcp

2.2 Browser MCP

基于浏览器扩展将AI连接到用户本地浏览器,实现对现有浏览器会话的自动化控制。利用用户已登录的浏览器环境在本地执行操作,速度快且数据不出本地,并可避免常见的机器人检测。

  • 使用场景:适用于需要使用真实用户浏览器执行任务,如端到端的Web应用测试、自动执行一些操作或处理重复性的网页数据采集与表单填写任务。

  • 项目地址: https://github.com/browsermcp/mcp

2.3 Magic MCP

由21st.dev提供的AI驱动的UI组件生成工具,开发者只需通过自然语言描述即可生成前端界面组件,提供实时预览和丰富的现代组件库,并支持TypeScript类型安全。

  • 使用场景:适合前端开发者快速创建网页UI元素和界面原型的需求。
  • 项目地址: https://github.com/21st-dev/magic-mcp

2.4 GitHub MCP

GitHub官方提供的MCP服务,与GitHub API深度集成。通过该服务器,AI工具可以无缝访问GitHub的仓库数据和操作接口,用于执行仓库管理、代码检索等自动化任务。

  • 使用场景:适合需要自动化GitHub平台操作的场景。

  • 项目地址: https://github.com/github/github-mcp-server

2.5 Firecrawl MCP

集成了Firecrawl服务,提供全面的网页爬取与抓取功能。支持对JavaScript渲染网页的内容提取、自动发现链接进行深度爬取、批量抓取以及网页搜索结果获取。

  • 使用场景:适用于AI需要从大量网页获取信息的场景,如爬取一系列网站以收集资料或抓取动态网页数据来辅助问答。
  • 项目地址: https://github.com/mendableai/firecrawl-mcp-server

3、最后

通过这些MCP自动化测试工具,你可以更高效地进行自动化测试,提升测试质量和效率。无论你是自动化测试新手还是资深专家,这些工具都能为你的测试工作带来极大的便利和提升。

原创作者: jinjiangongzuoshi 转载于: https://www.cnblogs.com/jinjiangongzuoshi/p/18935632
### 如何使用 Cursor 和 Playwright-MCP 实现自动化测试 #### 工具简介 Cursor 是一款支持通过自然语言交互的开发工具,而 Playwright-MCP 利用了 Model Context Protocol (MCP),使得大语言模型可以直接与自动化工具协作完成复杂任务。这种组合允许用户通过简单的自然语言指令快速实现 UI 自动化测试。 #### 环境准备 为了开始使用 Cursor 和 Playwright-MCP,首先需要确保已安装 Node.js 并配置好相关环境[^1]。Node.js 是运行 JavaScript 应用程序的基础环境,在此环境中可以轻松安装和管理 Playwright 及其他必要的依赖包。 #### 配置过程 在 Cursor 中启用 Playwright-MCP 功能的具体步骤如下: 1. **路径导航**:依次点击菜单栏中的 `文件 -> 首选项 -> cursor settings`。 2. **设置检查**:确认 `MCP` 设置部分是否按照官方文档的要求进行了正确配置。如果一切正常,则会在指定位置显示相应的配置界面[^2]。 #### 测试执行方式 - **一级使用场景**:用户可以通过逐条描述具体的操作步骤(如打开某个网页、填写表单字段或触发按钮事件),由 MCP 解析这些命令并转化为实际的动作序列来驱动浏览器行为。 - **二级使用模式**:提供目标 URL 后,系统能自动生成符合 Playwright 框架标准的初始脚本模板,并立即投入运行状态。 - **高级应用实例**:仅需告知待测站点地址即可让算法自主探索页面功能点进行全面扫描评估[^2]。 #### 示例实践说明 假设我们要模拟访问游戏平台 www.4399.cn ,并在其中查找 “王者荣耀” 游戏的相关链接: ```python # 定义基础动作逻辑 visit("https://www.4399.cn") # 访问指定网站 type_into("#search-input", "王者荣耀") # 在搜索框内键入关键词 click_on(".submit-button") # 找到提交查询请求的控件并激活它 wait_for_selector("#game-download-btn").then_click() # 寻找特定的游戏下载入口并进一步处理 ``` 以上伪代码片段展示了如何借助高层次抽象方法表达意图从而简化传统繁琐的手工编码工作量[^3]。 #### 注意事项 当针对某些特殊区域内的资源开展检测活动时,请务必注意网络连接状况的影响因素——例如可能存在的防火墙限制等问题可能会干扰正常的流程推进进程;此时建议适当调整代理策略以规避潜在障碍物的存在影响最终效果达成率。 #### 总结观点 采用 Cursor 加持下的 Playwright-MCP 技术方案确实大幅降低了入门门槛同时也提升了工作效率,但是要想达到理想化的全自动智能化水平仍然存在较大改进空间有待后续版本迭代完善优化方向继续努力前行[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值