faiss python安装_Faiss安装

博客涵盖多方面信息技术内容,包括用Swift打造动态库SDK和DemoAPP、Android游戏动画开发、Oracle EBS - SQL职责列表查询、C# WebService客户端调用、OSI模型和TCP/IP协议族知识、Python PIL库及pymysql使用、HDU算法题解、Vue表单验证等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用Swift打造动态库SDK和DemoAPP时所遇到的(Xcode7.3)

使用Swift开发SDK的优点是,生成的SDK对于Obj-C或是Swift调用都不需要自己去建桥接文件,因为Swift的SDK打包时默认已经自动生成供OC调用的.h文件.OC调用时直接import,s ...

【读书笔记《Android游戏编程之从零开始》】16.游戏开发基础(动画)

1. Animation动画   在Android 中,系统提供了动画类 Animation ,其中又分为四种动画效果: ● AlphaAnimation:透明度渐变动画 ● ScaleAnimati ...

Oracle EBS-SQL (SYS-24):职责列表

select B.application_name, TL.responsibility_name from fnd_responsibility_tl tl, fnd_responsibility ...

C#WebService 客户端通过Http调用请求(转)

1.webservice帮助类 public class WebServiceHelper    {               public static string CallServiceByG ...

OSI模型和TCP/IP协议族(一)

1990年以前,再数据通信和组网文献中占主导地位的分层模型是开放系统互连(Open System Interconnnection,OSI)模型.当时所有人都认为OSI模型将是数据通信的最终标准,然而 ...

hdu3567 八数码(搜索)--预处理

题意:为你两个状态,求a到b 的最小路径,要求字典序最小. 思路: 最开始想的是目标状态是变化的,所以打表应该不行,然后直接上A*,但是TLE了- -(瞬间无语) 然后看了下别人的思路,预处理出9个状 ...

Python PIL

Python PIL PIL (Python Image Library) 库是Python 语言的一个第三方库,PIL库支持图像存储.显示和处理,能够处理几乎所有格式的图片. 一.PIL库简介 1. ...

day60 pymysql

预知扩展内容,详见地址如下(关于数据库备份和恢复) http://www.cnblogs.com/linhaifeng/articles/7525619.html 我们一般写程序都是在py文件里面,那 ...

HDU 4918 Query on the subtree(动态点分治+树状数组)

题意 给定一棵 \(n\) 个节点的树,每个节点有点权.完成 \(q\) 个操作--操作分两种:修改点 \(x\) 的点权.查询与 \(x\) 距离小于等于 \(d\) 的权值总和. \(1 \leq ...

Vue 使用 vuelidate 实现表单验证

表单验证的应用场景十分广泛,因为网站对用户输入内容的限制是非常必要的. 在vue中,我们使用vuelidate方便地实现表单验证. 官方文档在这里https://monterail.github.io ...

### 如何使用 `FAISS.from_documents` 方法从文档创建 FAISS 索引 为了通过 `FAISS.from_documents` 方法构建索引,需要准备两个主要组件:文档列表和嵌入模型。以下是关于此方法的具体说明: #### 准备工作 1. **文档对象** 文档应以 LangChain 的 `Document` 对象形式存在,其中每个文档包含两部分:页面内容 (`page_content`) 和元数据 (`metadata`)。例如: ```python from langchain.schema import Document docs = [ Document(page_content="text content 1", metadata={"source": "doc1"}), Document(page_content="text content 2", metadata={"source": "doc2"}) ] ``` 这里的文档定义方式遵循了标准模式[^1]。 2. **嵌入模型** 嵌入模型用于将文本转换为向量表示。LangChain 支持多种嵌入模型,比如 HuggingFace 或 OpenAI 提供的模型。以下是一个简单的例子: ```python from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() ``` #### 创建 FAISS 索引 调用 `FAISS.from_documents` 方法时,传入上述准备好的文档列表和嵌入模型即可完成索引创建过程: ```python from langchain.vectorstores import FAISS db = FAISS.from_documents(docs, embeddings) ``` 该方法会自动处理以下几个步骤: - 将每篇文档的内容传递给嵌入模型生成对应的向量。 - 使用这些向量建立 FAISS 向量数据库。 #### 查询索引 一旦索引被成功创建,可以利用其查询功能检索相似文档: ```python query_result = db.similarity_search("example query text") print(query_result) ``` 以上操作展示了如何基于已有文档集合快速搭建一个支持语义搜索的功能模块[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值