python图像对比处理_图像处理 | 灰度变换与图像对比度拉伸

本文介绍了如何使用Python进行图像的灰度变换和对比度拉伸处理,包括理论背景、核心代码实现及Matlab版本的对比。通过调整图像的灰度级,可以改善图像的视觉效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题与解决思路

28ffe1f1161a236f023f2b32cf2ec1cd.png

图像实质上就是一个包含了许多像素点的矩阵。

具体计算过程如下:

通过min()函数以及max()函数分别求出处理前原图像的灰度级最小值与最大值;

对原图像进行归一化处理,即用【图像矩阵元素-处理前灰度级最小值】除以【处理前灰度级最大值-处理前灰度级最小值】;

将图像灰度级放缩至我们指定的预期期间,即用【处理后的灰度级最小值】加上“ 【步骤3中归一化处理后的结果】乘以【处理后的灰度级最大值-处理后的灰度级最小值】 ”;

将处理后的图像转为uint8类型以便于正确显示。

二、Python 实现代码

1) 核心函数:

from PIL import Image

from pylab import *

# 自定义图像对比度拉伸函数 myGrayScaleTransformJ

def myGrayScaleTransformJ(img1, para):

# 若输入不合法,返回原图像

if (para[0] < 0 or para[1] > 255 or para[0] > para[1]):

img2 = Image.fromarray(uint8(img1))

return img2

# min_after,max_after 分别表示拉伸后灰度级区间的最小值与最大值

min_after = para[0]

max_after = para[1]

# min_before,max_before 分别表示处理前灰度级区间的最小值与最大值

m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值