安卓平台高德地图智能定位技术实践指南

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本指南重点介绍在安卓平台上如何使用高德地图API实现GPS、WiFi和基站的智能选择定位。GPS提供精确位置信息,但在信号不佳的情况下需依赖其他技术。WiFi定位通过识别周围WiFi热点,结合数据库估算位置,而基站定位利用移动网络信号来确定设备位置。本资料还涉及源码的详细解释和智能选择定位算法的实现,以及如何集成高德地图API到你的应用中,以提升定位的准确性和稳定性。
高德地图

1. 安卓平台定位功能概述

1.1 定位服务的重要性

在现代社会,移动设备几乎无处不在,定位服务成为了智能手机和平板电脑的标配功能。用户通过定位服务可以实现诸多便利,如地图导航、位置分享、基于位置的广告推送以及位置安全等功能。对于安卓平台而言,提供准确和高效的定位服务,不仅关乎用户体验,还直接影响到应用的使用场景和应用生态的发展。

1.2 定位技术的演变

随着技术的发展,安卓平台的定位技术也在不断地演进。最初,GPS(全球定位系统)是主流的定位技术,依靠卫星信号提供位置信息。随后,出现了WiFi定位和基站定位,这些技术在室内和城市密集地区提供了比GPS更为准确的定位服务。此外,还有通过整合多种定位技术实现智能定位的算法,这些技术的出现进一步提高了定位的准确性和可靠性。

1.3 定位API的标准化

安卓系统通过定位API向开发者提供了丰富的定位功能。这些API不仅抽象了底层定位技术的复杂性,还封装了与定位相关的操作,包括获取用户当前位置、追踪位置变化以及设置位置更新的频率和精度等。开发者可以根据自己的应用需求,选择合适的定位API来实现特定的功能。随着安卓版本的迭代更新,定位API也在不断地完善和优化,为开发者提供了更为强大的工具来增强应用的定位能力。

2. GPS定位技术及局限性

2.1 GPS定位的基本原理

2.1.1 GPS技术的工作机制

全球定位系统(GPS)是由美国国防部研发并维护的一种卫星导航系统,它允许全球范围内的用户在任何时间、任何地点进行精确定位。GPS卫星群发射包含时间戳和卫星位置信息的无线电信号。用户的GPS接收器通过计算这些信号从多个卫星到达接收器所需的时间来确定其与每颗卫星之间的距离。

在接收器中,首先接收到的信号会通过下行链路传播时间被解码。然后,接收器会与卫星时钟同步,利用信号传播时间与光速乘积计算出与每颗卫星的距离。如果接收器可以同时接收到来自至少四颗卫星的信号,就可以解算出接收器的位置(经度、纬度、高度)和时间。

flowchart LR
    S1[卫星1] -->|信号| R[GPS接收器]
    S2[卫星2] -->|信号| R
    S3[卫星3] -->|信号| R
    S4[卫星4] -->|信号| R
    R -->|解析位置数据| P[定位解算]

每颗卫星载有精确的原子钟,用于维护时间的准确性。GPS接收器通常采用比较便宜的石英钟,因此,接收器需要通过比较不同卫星的信号来校准其内部时钟误差,这是通过测量信号的到达时间差实现的。

2.1.2 GPS信号的获取和处理

获取GPS信号的过程开始于接收器的天线,它捕获到来自太空的微弱无线电信号。这些信号包含数据码和伪随机噪声(PRN)码,数据码提供卫星轨道参数和其他重要信息,而PRN码用于区分不同卫星发出的信号。

接收到的信号会首先被放大和混合以转换为一个中间频率,然后通过模数转换器(ADC)转换成数字信号。数字信号通过相关器与本地PRN码序列对齐,从而提取出信号中的数据信息。

graph TD
    A[捕获GPS信号] --> B[放大和下变频]
    B --> C[模数转换]
    C --> D[数字信号相关处理]
    D --> E[解码卫星数据]
    E --> F[定位计算]

最终,信号的处理包括解码卫星数据,提取出卫星的精确位置、时间和其他可能影响定位准确性的因素(如大气延迟)。这些数据被用于一个复杂的数学计算过程,即定位算法,它基于用户接收器的已知时间和四个以上卫星的位置来计算用户的位置。

2.2 GPS定位的优势与不足

2.2.1 GPS定位精度的评估

GPS提供了在全球范围内精确位置的出色能力,但其精度受到多种因素的影响。正常情况下,水平方向的定位精度可以达到大约5到10米,高度方向的精度则更差。这种精度主要受到以下几个因素的影响:

  • 卫星钟误差:每颗卫星的原子钟可能漂移,需要定期校准。
  • 信号传播延迟:信号通过电离层和对流层时可能会延迟,影响测量距离。
  • 多路径效应:信号可能通过反射到达接收器,导致错误的距离读数。
  • 卫星几何布局:卫星相对于接收器的位置分布可以影响定位精度。
2.2.2 GPS在特定环境下的应用限制

虽然GPS是一项成熟的定位技术,但它在某些特定的环境中效果并不理想,这限制了它的应用范围。典型的限制环境包括:

  • 城市峡谷效应:高楼大厦等建筑物会阻挡卫星信号,影响定位精度。
  • 森林与密集植被:茂密的树冠会减少接收到的卫星信号数量。
  • 室内环境:卫星信号难以穿透建筑物屋顶,导致室内定位困难。
  • 极端天气:如暴雨、雪暴等天气情况可能降低GPS的精度。

为了克服这些限制,通常需要结合其他定位技术,例如WiFi定位、基站定位、或惯性导航系统(INS)等。通过融合多种技术,可以在不同环境中提供更可靠、更精确的定位服务。下一章我们将探讨WiFi定位技术及其应用,它在室内定位领域提供了一种有效的补充方案。

3. WiFi定位技术及其应用

3.1 WiFi定位技术的原理

WiFi定位技术是通过利用无线局域网接入点的信号强度来确定设备位置的方法。其基本原理涉及信号强度的测量以及利用这些信息进行位置估计。

3.1.1 WiFi信号的强度和距离测量

WiFi信号强度通常用分贝毫瓦(dBm)来表示,信号强度随着与无线接入点(AP)的距离增加而衰减。通过测量设备与多个已知位置AP的信号强度,可以估算出与每个AP的距离。这种技术被称为RF信号指纹定位。

信号强度与距离的关系

WiFi信号强度与距离的关系通常遵循对数距离路径损耗模型,即:

[ PL(d) = PL(d_0) + 10 \eta \log_{10} \left(\frac{d}{d_0}\right) + X_{\sigma} ]

其中:
- ( PL(d) ) 是信号强度的路径损耗。
- ( d ) 是信号传播的实际距离。
- ( d_0 ) 是参考距离(通常为1米)。
- ( \eta ) 是环境衰减因子,依赖于环境类型(室内、室外、开阔等)。
- ( X_{\sigma} ) 是标准正态分布的随机变量,代表信号的随机波动。

3.1.2 WiFi指纹库的建立和匹配

为了实现WiFi定位,首先需要建立一个WiFi指纹库,这个数据库记录了不同位置的WiFi信号特征。通过收集各个位置点的AP信号强度值,建立起一张指纹图。

指纹匹配过程涉及将实时采集的WiFi信号与指纹库中的数据进行比较,通过算法确定设备最可能位于的位置。常用的匹配算法包括K近邻算法(KNN)、指纹匹配算法、神经网络等。

3.2 WiFi定位的实际应用场景

WiFi定位技术因其实用性和成本效益而在多个场合得到了广泛应用。

3.2.1 室内外无缝定位的可能性

WiFi定位的一个重要应用场景是室内外无缝定位。借助WiFi定位,可以在建筑物内部提供高精度的定位服务,与GPS定位技术结合使用时,可实现在室内外环境下的无缝切换。

实现无缝定位的技术关键

无缝定位的关键技术包括:
- 多模态定位 :集成GPS、Wi-Fi、蓝牙等多种技术。
- 上下文感知 :根据用户的位置和运动状态动态选择合适的定位技术。
- 数据融合算法 :使用算法优化和融合不同传感器数据,改善定位结果。

3.2.2 WiFi定位在隐私保护方面的作用

与GPS相比,WiFi定位技术在隐私保护方面有其独特优势。因为WiFi信号更多地来自于公共无线接入点,而非用户设备本身,因此更容易实现对用户移动轨迹的匿名化处理。

隐私保护的实施策略

为了保障用户隐私,实施WiFi定位时应考虑以下策略:
- 最小化数据收集 :仅收集定位所需的信息。
- 数据匿名化 :在分析和存储位置数据前去除或伪装个人标识符。
- 用户同意和透明度 :向用户提供清晰的隐私政策,并确保用户知晓并同意其数据如何被收集和使用。

以上是第三章的内容,接下来我们将继续探讨基站定位技术及其应用。

4. 基站定位技术及其应用

4.1 基站定位技术原理

4.1.1 基站信号的三角测量法

基站定位技术是一种通过计算移动终端与周边基站之间的信号强度和时间差来确定其位置的方法。这种技术利用的原理是基于无线电波的传播特性,即信号强度随着距离的增加而减弱,同时无线电波的传播速度是有限的,因此可以通过测量信号从基站到移动设备所需的时间来计算距离。

基站的三角测量法涉及至少三个已知坐标的基站,通过计算移动设备到这三个基站的距离,可以确定一个交叉点,该点就是移动设备的坐标位置。为了提高定位的准确性,通常会采用更多基站的数据来进行交叉验证。这种方法在很大程度上取决于基站信号的传播模型和移动设备与基站之间的相对位置。

graph LR
A[移动设备] -->|信号强度和时间差| B[基站1]
A -->|信号强度和时间差| C[基站2]
A -->|信号强度和时间差| D[基站3]
B -->|距离| E[交叉点]
C -->|距离| E
D -->|距离| E

上图展示了三角测量法的基本原理,移动设备到三个基站的距离共同确定了设备的位置。

代码块示例
// 假设函数getSignalStrength()和getTimeDelay()分别用于获取信号强度和时间延迟
double[] getTriangulationLocation(BaseStation baseStation1, BaseStation baseStation2, BaseStation baseStation3) {
    double signalStrength1 = getSignalStrength(baseStation1);
    double timeDelay1 = getTimeDelay(baseStation1);
    double signalStrength2 = getSignalStrength(baseStation2);
    double timeDelay2 = getTimeDelay(baseStation2);
    double signalStrength3 = getSignalStrength(baseStation3);
    double timeDelay3 = getTimeDelay(baseStation3);
    // 这里省略了复杂的三角测量计算过程
    // 假设calculateLocation()函数根据信号强度和时间延迟计算出位置坐标
    double[] location = calculateLocation(signalStrength1, timeDelay1, signalStrength2, timeDelay2, signalStrength3, timeDelay3);
    return location;
}

在这个示例中,我们假设了 getSignalStrength() getTimeDelay() 函数分别用于获取信号强度和时间延迟。实际情况下,这些数据需要通过移动设备的无线模块采集。 calculateLocation() 函数则是用来计算位置的,它需要实现复杂的数学运算,以根据信号强度和时间延迟估计出位置坐标。

4.1.2 基站数据的融合和精度优化

基站定位的数据融合涉及到从多个数据源提取信息并整合成一个一致的输出结果。在基站定位中,不同的基站提供的数据可能会有所差异,比如信号强度和时间延迟可能会因环境变化而波动。数据融合的目的是为了提高定位的稳定性和准确性。

一种常见的融合策略是采用加权平均的方法。在这种方法中,根据每个基站信号的可靠性和质量为其分配不同的权重。例如,信号质量高,距离近的基站的权重应该更大。通过计算加权平均值,可以得到更稳定和准确的位置估计。

优化基站定位精度的一个重要途径是使用更多的基站数据和更精确的模型来校准信号传播的时间延迟和衰减。这样可以减少环境因素带来的误差,提高定位的准确性。

// 假设calculateWeightedLocation()函数实现加权平均计算位置
double[] calculateWeightedLocation(List<BaseStation> baseStations) {
    double[] weightedLocation = new double[2]; // 存储加权平均位置
    double totalWeight = 0.0;
    for (BaseStation station : baseStations) {
        double weight = getStationWeight(station);
        double[] location = getStationLocation(station);
        // 累加加权位置
        weightedLocation[0] += location[0] * weight;
        weightedLocation[1] += location[1] * weight;
        // 累加总权重
        totalWeight += weight;
    }
    // 计算最终加权平均位置
    weightedLocation[0] /= totalWeight;
    weightedLocation[1] /= totalWeight;
    return weightedLocation;
}

// 假设getStationWeight()函数获取基站权重
double getStationWeight(BaseStation station) {
    // 基于距离、信号质量和环境因素计算权重
    // ...
}

在上述代码示例中,我们通过 calculateWeightedLocation() 函数实现了加权平均计算位置的功能。每个基站的权重是通过 getStationWeight() 函数计算得出的,该函数基于距离、信号质量和环境因素来决定权重。实际应用中,这个函数需要根据具体情况设计和调整。

4.2 基站定位在移动通信中的作用

4.2.1 提高紧急呼叫的定位速度

在紧急呼叫的情景下,快速准确地定位呼叫者的位置是非常重要的。基站定位技术在这方面展现出了其独特的价值。由于它不需要移动设备自身的GPS模块参与,因此可以在室内等GPS信号弱或无法覆盖的区域快速提供位置信息。此外,基站定位的数据采集过程比GPS要快得多,这对于紧急响应时间非常关键。

此外,移动网络运营商可以通过软件升级的方式,增强其现有网络的定位功能,而不需要用户升级手机硬件。这意味着紧急呼叫服务可以通过现有的基础设施迅速推广和应用。

4.2.2 基站定位在移动广告中的应用

基站定位技术还被广泛应用于移动广告行业。通过分析用户的移动轨迹和偏好,广告商能够更精确地推送相关度高的广告内容。例如,在用户到达特定的地理区域时,可以通过基站定位技术检测到这一行为,并基于此提供定位广告。

通过结合用户的位置信息和其他数据,如用户的消费历史和行为模式,移动广告能够实现更个性化的广告投放。当然,这种应用需要在保护用户隐私的前提下进行,确保收集和使用用户信息的过程遵守相关的法律法规。

在移动广告领域,基站定位的实时性和范围覆盖广的特性为其提供了独特的优势。实时定位能力可以帮助广告商及时捕捉到用户的新位置,并快速做出响应。而广覆盖的特性则意味着即便用户进入室内或GPS信号弱的区域,广告商依然可以获取用户的位置信息。

总结而言,基站定位技术在移动通信领域扮演着越来越重要的角色,不仅在提高紧急呼叫的定位速度方面发挥着关键作用,还通过为移动广告商提供精准的位置信息,开拓了新的商业模式和应用场景。随着技术的不断演进和优化,预计基站定位技术将在未来发挥更大的价值。

5. ```

第五章:高德地图API的集成和应用

5.1 高德地图API的介绍

5.1.1 高德地图API的基本功能和权限

高德地图API为开发者提供了丰富的地图服务功能,其中包括但不限于地图展示、地点搜索、路径规划、定位服务、交通信息等。为了使用高德地图API,开发者需要申请相应的Key,然后在应用中集成API。API的使用权限依赖于Key的类型和设置。Key可以设置为公开访问,也可以限定访问的域名和IP,以确保安全。

要开始使用高德地图API,首先需要在高德开放平台注册账号并创建应用,从而获得API Key。此外,开发者还可以根据自己的需求选择使用不同的服务套餐,这些套餐包括免费试用以及不同级别的付费服务,其中包含了不同的调用限额和优先级。

5.1.2 高德地图API与其他地图API的比较

与Google地图API、百度地图API等其他地图服务提供商相比,高德地图API拥有自身的特点和优势。高德地图是中国领先的地图服务提供商,因此在服务覆盖和数据精度上对国内用户具有较强的优势。此外,高德地图API支持中文地址查询、本地特色的POI(兴趣点)信息等,更加贴合中国市场的需求。

高德地图API还提供了丰富的Web服务接口和移动应用SDK,可以为不同的应用场景提供定制化的解决方案。例如,在移动应用中集成高德地图API,不仅可以获得地图展示功能,还可以利用高德地图强大的位置服务能力,实现如实时导航、位置共享等应用。

5.2 高德地图API在项目中的应用

5.2.1 实时交通信息的获取和展示

高德地图API提供的实时交通信息服务能够帮助开发者在项目中实时获取路况信息,进一步实现交通信息的可视化展示。开发者可以通过调用高德地图API中的路况服务接口,获取实时的交通流量、拥堵情况等数据,并结合地图展示给用户。

在实际应用中,开发者需要使用HTTP请求来调用路况服务API,并处理返回的JSON格式数据。这些数据包含有道路的实时状况信息,如道路名称、交通状况等级、具体位置等。通过解析这些数据,并利用高德地图SDK提供的方法,可以在地图上以不同颜色的线条标记不同级别的拥堵情况。

5.2.2 多地图和多路线的规划与展示

在需要提供路径规划服务的应用中,高德地图API能够帮助开发者实现复杂的路线规划功能。开发者可以调用路径规划API,根据用户的需求(如最短路径、最快路径、最少费用车辆路线等)计算出不同的路线方案,并将这些方案展示在地图上。

路径规划API支持多种交通方式,包括步行、骑行、公交、驾车等。开发者可以通过设置不同的参数,如出行时间、起始点和终点、是否避开高速等,来获取最佳路线。API返回的数据包含了详细的路线信息,包括每个路段的行驶方向、名称、预计行驶时间等。开发者利用高德地图SDK的绘图能力,可以将这些路线以直观的方式展示在地图上,为用户提供清晰的导航指引。

flowchart LR
    A[发起路线规划请求] --> B[设置路线规划参数]
    B --> C{调用高德地图API}
    C --> D[获取路线规划结果]
    D --> E[解析路线数据]
    E --> F[在高德地图上绘制路线]
    F --> G[展示多路线规划结果]

以上流程图展示了发起路线规划请求到展示多路线规划结果的整个过程。在实际开发中,需要按照流程图中的步骤来实现功能。首先,开发者需要根据业务逻辑发起路线规划请求,然后设置相关的规划参数。接着,调用高德地图API获取结果,并对结果数据进行解析。最后,在地图上绘制路线,并将多条规划好的路线展示给用户。

在代码实现中,开发者需要对HTTP请求返回的JSON数据进行解析,提取出路线坐标点等关键信息。然后,根据这些信息使用高德地图SDK提供的绘图方法来绘制路线。需要注意的是,路线可能会存在多条,开发者要确保每条路线都被正确地绘制在地图上,并且能够以不同的颜色或标记加以区分。

通过集成高德地图API,开发者能够为用户提供丰富的地图服务功能,从基本的地图展示到高级的实时交通信息获取,再到复杂的多路线规划与展示,极大地丰富了应用程序的实用性和用户体验。

6. 智能选择定位算法实现与数据处理

在多变的移动环境中,用户对于定位服务的需求日益提高。智能选择定位算法通过分析各种定位技术的特性,动态选择最合适的定位方法,确保了定位服务的可靠性和精确性。本章节将详细介绍智能选择定位算法的实现逻辑,并对其数据处理和Java源码进行解析。

6.1 智能选择定位算法的逻辑

智能选择定位算法依赖于决策逻辑,该逻辑需要对不同定位技术的优缺点有深入的理解,并能根据用户的实际需求和环境条件做出最佳的选择。

6.1.1 算法在不同定位技术中的选择策略

选择策略的制定需要考虑多种因素,包括但不限于信号的可用性、精度、耗电量以及用户的隐私保护等。下面是一个简化的决策流程示例:

  1. 初始化 :算法启动时,初始化各种定位技术的状态信息。
  2. 环境检测 :根据设备的传感器数据(如加速度计、陀螺仪)判断用户的环境(室内或室外)。
  3. 技术可用性检查 :检测GPS、WiFi、基站等定位技术的信号可用性和强度。
  4. 定位精度评估 :结合历史数据和实时数据,评估各定位技术的精度。
  5. 权重计算 :根据应用需求,为信号强度、精度、耗电量等因素设置权重。
  6. 决策和选择 :计算各种技术的得分,并选择得分最高的定位技术。

6.1.2 算法优化和权重分配机制

为了进一步提高定位的准确性,算法优化中往往会采用动态权重分配机制,根据用户的实时需求和环境变化,动态调整权重。

public double calculateScore(PositioningTech tech, UserContext context) {
    double score = 0.0;
    if (tech.isAvailable()) {
        score += TECH_AVAILABILITY_WEIGHT * tech.getAvailabilityScore();
        score += SIGNAL_STRENGTH_WEIGHT * tech.getSignalStrengthScore();
        score += ACCURACY_WEIGHT * tech.getAccuracyScore(context);
        // 权重分配根据实际情况进行调整
        score *= context.getPriorityWeight(tech);
    }
    return score;
}

上述代码是一个简化的评分函数,实际应用中需要更多的数据和复杂的逻辑来确保算法的准确性。

6.2 定位数据的处理和比较

在智能选择定位算法中,数据处理和比较是一个核心部分。算法需要处理历史数据和实时数据,从中提取有用信息,并对比不同定位技术的优劣。

6.2.1 历史数据和实时数据的融合

历史数据可以提供位置的稳定性和可靠性,而实时数据则提供了位置的最新信息。结合两者,可以增强定位的准确性。

public Location integrateData(Location的历史数据, Location的实时数据) {
    // 按照一定的算法或模型融合数据,这里仅提供伪代码示例
    Location 融合位置 = new Location();
    融合位置.setX(融合算法(历史数据.getX(), 实时数据.getX()));
    融合位置.setY(融合算法(历史数据.getY(), 实时数据.getY()));
    return 融合位置;
}

6.2.2 不同定位技术输出数据的比较分析

各种定位技术的数据输出有所不同,算法需要对它们进行比较和分析,找出最适合的定位方案。

public void compareTechnologies(Location[] 技术位置数组) {
    for (int i = 0; i < 技术位置数组.length; i++) {
        for (int j = i + 1; j < 技术位置数组.length; j++) {
            Location locI = 技术位置数组[i];
            Location locJ = 技术位置数组[j];
            // 比较定位位置的准确性、速度、功耗等
            compare(locI, locJ);
        }
    }
}

6.3 Java源码解析与调试

智能选择定位算法的Java源码包含多个复杂类和方法,其核心在于如何高效地选择和融合各种定位数据。

6.3.1 定位算法关键代码的逻辑分析

以下是对定位算法中关键部分的代码逻辑分析:

public class PositioningAlgorithm {
    // 算法选择逻辑
    public Location chooseBestLocation(Location[] locations) {
        // 这里使用简化的伪代码说明算法选择逻辑
        Location bestLocation = locations[0];
        double bestScore = Double.MIN_VALUE;
        for (Location loc : locations) {
            double score = calculateScore(loc);
            if (score > bestScore) {
                bestLocation = loc;
                bestScore = score;
            }
        }
        return bestLocation;
    }
    // 其他辅助方法...
}

6.3.2 常见问题的调试方法和解决方案

在定位算法的实现过程中,可能会遇到一些常见问题,如信号丢失、数据不一致等。调试这些问题是确保算法稳定运行的关键。

public void debugAlgorithmIssues(Location[] locations) {
    // 检测数据的完整性
    if (locations == null || locations.length == 0) {
        handleDataLossIssue();
    }
    // 检测数据的一致性
    if (isDataConsistent(locations)) {
        handleDataInconsistencyIssue();
    }
    // 其他调试逻辑...
}

定位算法的调试需要详细的日志记录和错误分析,同时还需要确保能够快速定位问题并给出相应的解决策略。

以上各章节的深入探讨,展示了智能选择定位算法的实现细节,数据处理方法,以及如何在实际开发中进行源码解析和问题调试。通过这些章节内容,读者可以对定位算法有更全面的理解,并在自己的项目中加以应用和优化。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本指南重点介绍在安卓平台上如何使用高德地图API实现GPS、WiFi和基站的智能选择定位。GPS提供精确位置信息,但在信号不佳的情况下需依赖其他技术。WiFi定位通过识别周围WiFi热点,结合数据库估算位置,而基站定位利用移动网络信号来确定设备位置。本资料还涉及源码的详细解释和智能选择定位算法的实现,以及如何集成高德地图API到你的应用中,以提升定位的准确性和稳定性。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值