自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

学姐带你玩AI的博客

专注AI专业干货,AI前沿资讯,职业发展指导。

  • 博客(763)
  • 收藏
  • 关注

原创 登上Science子刊封面的硬核idea:端到端强化学习!

是什么让华科微软地平线争先发文?原来是端到端强化学习!先是性能提升3倍的RAD,再是首个基于GRPO的自动驾驶大模型AlphaDrive,以及纯视觉SOTA模型ReCogDrive,甚至还有的登上了Science子刊封面...只粗略一看,就能体会到端到端RL如今的热门程度,尤其在具身智能和大模型决策这俩赛道,真真是火力全开!其实端到端RL现在就像10年前的深度学习—— 框架未定,山头林立,可发挥空间大,对于论文er来说,是绝好的发文选择。

2025-07-16 17:17:42 487

原创 把“傅里叶变换、注意力机制”组合在一起,这篇文章你一定要看

傅里叶变换+注意力机制,科研界的“当红炸子鸡”!它解决了AI模型的两个致命痛点——长程依赖建模效率低,和复杂信号特征捕捉不充分,应用价值显而易见!自清华FoPE等陆续发布于ICML25之后,这种组合热度飙升,又因其“故事”易讲,创新点包装灵活,成为了顶会顶刊持续青睐的“真香”方向!但值得注意的是,死磕通用架构早已不是这方向发文首选,深入某个垂直领域,针对性解决问题,再讲好故事,想必审稿人会更有兴趣。比如考虑“领域定制滤波”,可快速出成果;

2025-07-14 17:05:56 298

原创 超强组合!CNN+RNN!!

今天聊聊CNN+RNN。这组合确实不算新潮了,但在特定赛道,比如结合新问题或新架构时,还是很有“闷声发论文”的潜力的。还记得新架构TTT吗?在当前纯CNN+RNN结构堆砌难发好文的情况下,这就是一种突破。还有“老结构新问题(农业/生物)”、“新解释(神经机制)”等方向,都是CNN+RNN老树还能开新花的好选择。因此如果有论文er感兴趣,不妨一试。想快速出成果,就做做应用创新;想冲顶会顶刊,可以考虑TTT架构+神经科学解释。本文整理了10篇CNN+RNN前沿论文,帮助各位了解最新进展,找准思路。

2025-07-11 16:29:16 712

原创 顶刊发表:时空预测新突破!精度超10+倍,速度超100+倍

近期,北大团队提出了一个时空预测新架构U-RNN,已发表在Journal of Hydrology(一区TOP)。实验证明,其精度超过现有AI模型10+倍(MAE),速度超过机理模型100+倍!可见到了2025年,时空预测相关的研究有了相当大的突破,如今不仅技术瓶颈松动,应用场景也在疯狂扩张,顶会顶刊成果数目也直线上升。但很显然,对于论文er来说,纯算法创新在这方向已经很难过稿了,未来在能源、交通等垂直领域深挖场景+新技术(比如LLM)适配方面更易突围。

2025-07-10 18:20:05 442

原创 2025必火的发文方向:特征融合+目标检测

分享一个理论有深度(多模态对齐/分布偏移)、场景有痛点(自动驾驶/医疗)、技术有突破空间(动态融合/神经符号结合)的研究方向:特征融合+目标检测。根据近期成果,目前这方向正处在技术突破和应用爆发的双重风口,灌水容易,但想做出深度比较难。建议新手尝试从跨模态鲁棒性切入,加个动态权重分配模块,冲二区问题不大。如果要求比较高,想狙TPAMI这类顶刊,可以试试把脉冲神经网络扩展到多模态融合。

2025-07-08 17:34:31 941

原创 只打高端局的多模态融合,用可解释性再次霸榜CVPR!

有人问可解释的多模态融合到底是不是坑?答曰:卷,但机会犹存。根据CVPR 2025投稿数据,多模态+可解释是三大热门之一,而工业界也同样渴求可解释性...因此这方向可以说需求爆炸,痛点深重,还是很值得卷一卷的。不过对于论文er来说,目前纯刷榜的“可解释后处理”已经越来越难中了,必须把可解释性设计进模型底层。也就是说,发文思路推荐:架构创新 > 垂直应用 > 后处理工具。创新点可着力关系推理、具身解释、边缘部署等。其实说白了,就是找个工业界痛点(如医疗误诊、机器人事故),用可解释性解决它。

2025-07-07 17:15:36 822

原创 2025年Graph+AI Agents最新创新思路

AI Agent,一个当下科技领域特别火爆的概念。发展至今,它规划、记忆、协调等核心功能在处理复杂关系方面遭遇了瓶颈...那么该如何解决?来人,上Graph!Graph以其高效关联分析能力,结合Agent的自主决策优势,完美实现复杂关系的高效推理与动态决策!鉴于如此优势,Graph+AI Agents自然成为了一个高潜力、强创新的研究方向,不仅拥有广泛的应用场景,相对应的学术研究也十分火热。但在多模态扩展、高效协作、深度推理三方面,这方向仍然存在空白,强推各位论文er关注!

2025-07-04 17:28:02 638

原创 多模态医学图像创新突破,成果登上Nature正刊!

医学人工智能领域有个很火的方向:多模态医学图像。最近,哈佛等团队在Nature正刊上发表了相关文章,讲述了多模态生成式AI在医学图像解读中的应用,非常值得该方向的同学研读。实际上,多模态医学图像的论文在顶会/顶刊接受率向来高,尤其近半年,多项工作入选CVPR、AAAI、中科院TOP刊等。这方向虽然竞争日益激烈,但在罕见病诊疗、基层医疗、多组学融合等场景仍然存在大量创新空间,如果想发论文,还是很推荐关注的。

2025-07-03 17:08:14 760

原创 Nature+CVPR双杀!Transformer热度狂飙,何恺明、李飞飞都参与了

要问哪个是当下最流行的模型结构,那必然是Transformer。尤其近几年,因为LLM大行其道,我们对Transformer的探索热情成倍上升。具体体现在各方大佬发布的诸多成果上,比如李飞飞团队的FlowMo、字节seed出品的SAIL、何恺明CVPR2025新作、微软Spectformer...CVPR/ICLR/nature methods等顶会顶刊上相关研究也数目繁多,可谓盛况空前。细看之下,Transformer目前主要有两大创新路径:改进和应用。

2025-06-30 17:40:01 739

原创 PINN又爆创新!算法小改,百倍加速!

学术界大明星PINN又新爆了不少好东西,近期的就有权威期刊JCP2025上的VS-PINN,算法小改一下,就比原生PINN加速近百倍!另外还有个经典作Stiff-pinn,单单今年就被引100次!需知PINN能大大降低实验难度,是“水”论文的一把好手,这波爆发想必又有发挥(搞创新)空间了~细看这俩的创新算是PINN的优化与训练策略类,除此以外,PINN还有自适应、采样与离散化、与其他技术结合等主要创新路径,尤其自适应,物理方程不够,神经网络来凑;

2025-06-27 18:25:06 469

原创 左手Nature,右手CVPR!持续学习(Continual Learning)才是2025发文捷径!

深度学习中,“灾难性遗忘”是个不可避免的问题,而持续学习的出现打破了这一困境,它能让模型在多个任务间顺序学习而不遗忘旧知识,同时具备适应新任务的能力。鉴于如此优势,持续学习的研究一直是AI领域的核心议题,目前也正处于爆发期。结合2025年最新动态(CVPR25的SEMA、nature子刊的CH-HNN),创新主要聚焦突破单一任务的局限,具体点说就是结合联邦学习、元学习等交叉技术,向多模态、动态环境、资源高效、可解释性等方向演进。

2025-06-25 17:17:49 479

原创 这思路逆天了!注意力机制+CLIP霸榜顶会,直接带飞发文之路!

这种结合可以通过动态对齐、上下文感知和并行计算,显著提升多模态任务的性能。在多模态爆火的当下,算是热点赛道。得益于其创新,这方向现处创新爆发期,可参考成果丰富。比如CVPR 2025的DiTCtrl、AAAI 2025的Clip-cid、STDD、IJCV的WeakCLIP...高产盛况可见一斑。如果感兴趣的同学想上车,可以先看我整理的了解前沿,代码基本有。创新的话建议大家侧重“小改动大提升”,优先选择差分注意力扩展、医疗/工业细粒度适配、生成式协同框架等方向切入,快速产出成果。

2025-06-23 17:51:36 428

原创 (CVPR 2025)可变形Mamba再度进化!SOTA性能炸裂,涨点起飞

今年看mamba又中了一堆顶会,尤其CVPR 2025,这发文潜力有目共睹。其中比较值得关注的有个可变形Mamba,大连理工发布的DefMamba,全球首个可变形扫描视觉Mamba框架,实现四大任务性能全面SOTA。可变形Mamba作为SSM的动态扩展,拥有“动态效率平衡”核心优势,它的理论延展性和应用多样性(医疗、生物)为研究提供了多个发力点,创新空间可观。今年推荐各位论文er优先以医疗影像分割与视频时序建模作为突破场景,再结合混合架构、3D扩展搞创新,发高区机会大。

2025-06-18 16:56:15 514 1

原创 2025年深度学习+多目标优化最新创新思路

围观了港科大等团队的最新综述,发现深度学习+多目标优化近年来也是话题多多,尤其在图像生成、自动驾驶、大模型训练等场景中呈现爆发式增长。简单说来,这种技术不仅能解决传统单目标优化的局限性,还能让模型在复杂场景中实现多任务协同提升,成为当前顶会抢发热点也不奇怪。更别说这方向正处于技术红利期,无论是算法创新还是场景开拓都很有空间。比如应用型研究(医疗/通信/环保)+大模型对齐就比较容易出成果,创新切入点推荐小而精(改经典算法)、跨学科(+脑机接口)等。

2025-06-11 18:21:32 886

原创 Nature发表!多尺度强化学习重大成果!

最近《Nature》上有一篇多尺度强化学习的新工作,讲的是大脑中的多时间尺度强化学习,具体细节可看下文解析。这方向是目前复杂系统智能化的核心技术,凭借分层决策与动态适应性在工业界有广泛的应用前景。相信有些论文er已经发现了,这些优势也契合了当下的趋势(AI正不断向复杂场景渗透),可以预见,多尺度RL即将迎来爆发式增长机遇。近期的一些高区成果也表明,这方向已跻身顶会顶刊录用率攀升的热门赛道。为帮助各位快速上车,我整理了9篇多尺度强化学习新成果,有代码的已经附上了。

2025-06-10 18:01:01 427

原创 Mamba+物理信息原理!清华都在做的论文大杀器!

不久前清华祭出了一种长序列建模大杀器——PhyxMamba框架,创新性地将Mamba与物理信息原理相结合,为混沌系统的长期预测提供了新思路!这种创新非常值得论文er关注,一是因为Mamba+物理信息原理属于俩大热门结合,高效性配上可解释性,在众多工业场景中都很有话题度,发展前景可观;二是,这方向交叉性很强,现有研究较少,更容易找到创新切入点。如果感兴趣,建议优先选择与现有Mamba工作结合紧密的领域(如图像处理)进行突破,再逐步扩展到生物医学等复杂场景。

2025-06-09 17:45:42 375

原创 贝叶斯深度学习!华科大《Nat. Commun.》发表BNN重大突破!

华科大提出基于贝叶斯深度学习的超分辨率成像,成功被Nat. Commun.收录。可以说,这是近期最值得关注的成果之一了。另外还有AAAI 2025上的Bella新框架,计算成本降低了99.7%,也非常值得研读。显然鉴于BNN“不确定性建模”与“概率推理”的优势,这类BNN研究随着数据可靠性需求的激增,已经逐渐成为AI领域炙手可热的研究方向,顶会顶刊占坑无数,尤其在医疗诊断、自动驾驶等高风险场景中尤为受欢迎。不过值得注意的是,当前BNN的研究呈现三大创新趋势:跨学科融合、多模态优化、小样本突破。

2025-06-06 18:22:22 1159

原创 入选中科院一区TOP!基于YOLO和卡尔曼滤波的目标检测新SOTA!

分享个目标检测和跟踪领域的黄金组合:YOLO+卡尔曼滤波!近年来自动驾驶、工业自动化等场景需求激增,这类拥有实时性、多目标处理能力和鲁棒性等优势的组合也因此广受青睐,迅速跻身顶会顶刊热门研究方向,高质量成果不少。比如四川大学新提出一种无人机分层搜索方法,在六种不同环境中都性能优越,成功登上中科院1区TOP!还有顶会的Kalman-YOLO方法...大多成果的创新基本围绕动态模型优化、多模态融合、轻量化设计等多维角度,如果有同学想搞,也推荐考虑这些思路。

2025-06-05 19:13:35 344

原创 频域+时间序列,一行代码稳定提升预测精度!

以往传统时域建模一直占据主导,但如今频域研究异军突起,与时间序列结合,能挖掘出更丰富信息,显著提升模型性能与预测精度。因此,频域+时间序列逐渐成为学术焦点,在金融风控、医疗信号分析、工业预测等领域都实现了突破性应用!比如最近ICLR 2025上的FreDF,只需加入一行代码,就能在主流模型上实现预测精度的稳定提升!还有一区TOP上的TFDNet,在多个基准数据集上均超越SOTA!显然这方向已经成为了顶会顶刊常客。

2025-06-04 19:11:52 357

原创 中稿⁺¹ !多模态学习+注意力机制再登顶会!新成果GPU内存消耗减半

深度学习找不到创新点?。作为多模态学习和注意力机制这俩大热点的结合,交叉注意力融合凭借动态对齐与高效建模的优势,在众多多模态任务(比如图像-文本匹配)中脱颖而出,发展前景相当可观,成功成为。这方向尤其在高效计算、弱监督任务中容易产出创新点,而且根据近年顶会顶刊的收录情况,轻量化、自适应融合、弱监督学习等方向非常值得关注。比如CrossMamba方法,在目标声音提取任务中,参数量减少的同时,既保持了高效计算,又显著提升了性能。

2025-06-03 17:00:54 716

原创 提速400倍!物理信息卷积神经网络登上中科院一区TOP!

今天来聊聊物理信息卷积神经网络PICNN。大家还熟悉PINN吧,当红辣子鸡。PICNN作为PINN的一种变体,引入了卷积层来增强对空间数据的处理能力,在涉及空间特征的场景下会比PINN更高效。因此最近的PICNN在特定垂直领域(比如工程仿真)热度明显上升,各大顶会顶刊都出现了不少相关研究。比如中科院一区TOP上一种基于PICNN的方法、提速400倍的微电网经济调度新方法。为方便各位快速了解这些成果,我从中挑选了9篇最新的值得研读文章分享,可用作参考。

2025-05-30 18:27:27 704

原创 找到了目标检测最好的发论文的idea!简单易上手!

有人说目标检测不好做了?可不见得,作为计算机视觉的核心任务之一,它在2025年仍将是研究热点,也依然会是我们“水”论文的好选择(doge)。不过这方向如今确实卷,而且研究重心正从“精度竞争”转向“实际应用落地”和“解决长尾问题”。比如典型代表YOLO,创新主要围绕引入注意力机制、模型轻量化、与其他新技术结合、损失函数优化、数据增强等等,更注重模型的“实用性”。至于更广泛的目标检测,目前的主流创新思路还是transformer-based、基于多层感知机、扩散模型,还有近期热门的大模型时代的目标检测等。

2025-05-29 19:39:26 1036

原创 多模态融合可能是现在或者未来一段时间最好发论文的方向了!

多模态融合,一个2025年仍然处于爆发期的热门方向,还在持续吸引学术界与工业界的投入。作为顶会顶刊常客,它也依然是当前最好发论文的方向之一。目前,这方向主流的创新思路主要有两大类:改进类创新和结合类创新。改进类创新如可解释多模态融合,核心目标在于实现性能提升。而结合类指的是多模态与其他技术协同,这方面根据结合的具体技术、目标和实现方式,可进一步区分为3个层次(任务、方法、模型)。

2025-05-28 18:18:37 909

原创 无监督强化学习新突破!无需标注,性能飙升159%!

最近,强化学习的一项突破帮助我们向AGI又迈进了一大步!那就是清华&上海AI Lab的Test-Time RL(测试时强化学习),无需标注,模型自学,性能飙升159%!Test-Time RL是一种无监督强化学习方法,相较于传统强化学习,这类方法可以解决依赖人工奖励、数据效率低、探索能力弱等问题,有很强的自主性、高效性和适应性,特别适合在奖励稀疏、环境未知或任务复杂的情况下应用,发展前景广阔。

2025-05-27 17:22:28 425

原创 接Accept!“机器学习+SHAP”发文大有可为,轻松拿下一区SCI!

在需要高可解释性且数据复杂的场景,比如医疗、法律、工业等,机器学习+SHAP是个潜力巨大的研究方向,目前也已经成为了学术热点。这是因为这种结合拥有提供模型可解释性、公平性检测、模型调试和优化、业务场景适配等能力,在增强机器学习模型的透明度和可信度方面遥遥领先,解决了我们对可解释性的迫切需求。这种研究热情也体现在近期的成果上,多个中科院TOP期刊都发表了相关论文,推荐感兴趣的同学关注。这边为了帮各位节省查询的时间,我已经整理好了11篇机器学习+SHAP新论文,需要的自取~

2025-05-26 18:20:03 312

原创 用CNN做时间序列预测,拿下多篇中科院一区TOP!

在处理复杂、高维和非线性的时间序列数据上,会比传统方法更适合,可以给我们提供更强的建模能力、更高的计算效率和更好的扩展性。这些优势同时也带来了巨大的发展空间,目前该方向已经成功应用于金融、能源、医疗、环境监测等多个领域,多项突破性成果登上中科院一区TOP,已然成为当前的热门研究方向。为了方便感兴趣的同学找参考,加快论文进度,我从近期中挑选了,都是值得深入研读的paper,需要的同学可无偿获取。全部论文+开源代码需要的同学看文末。

2025-05-23 17:50:21 665

原创 贝叶斯优化+CNN+LSTM=小论文创新点

2周速成小论文可能吗?有点悬,但有可能。这种“三结合”的优势在于技术成熟度高(经典CNN和LSTM)、创新点灵活性强:如果不改模型结构,可以做新场景应用、超参数优化对比、轻量级创新...再加上实验可模块化,目前已成为机器学习领域热门投稿方向!感兴趣的同学速速关注。另外我也多提一嘴,对于论文er来说,小论文要的不是0到1,而是0.5到0.8,有合适的参考才能更快找到idea!为了帮各位省掉找参考的步骤,加速论文进度,我已备好,无偿分享~全部论文+开源代码需要的同学看文末。

2025-05-20 19:04:17 883

原创 只做注意力机制怕是不够了,想要高分得加快速傅里叶变换!

快速傅里叶变换FFT,信号处理的经典算法,通过结合学术热点注意力机制,可以有效解决传统CNN在长程依赖建模、计算效率优化等核心问题上的局限性,应用扩展性高,尤其适合多模态融合等复杂任务。这方向目前已在ICLR等顶会中频繁出现,微软等也提出过SpectFormer,在各CV任务中取得了SOTA性能!可见对论文er来说,无疑是个创新性高,顶会接受度好,适合发论文的研究方向,推荐有论文需求的同学关注。

2025-05-20 10:07:15 958

原创 LSTM+时间序列异常检测,发文香饽饽!

是目前比较活跃的研究方向,它解决了传统方法在长依赖建模、非线性适配、自动化特征提取等方面的不足,有效提升时序异常检测的性能,是工业物联网、金融风控等领域重要的、值得深入学习的技术。这方向也是,成果产出不少。如果单纯想发论文,可突出一下应用创新和工程优化。如果是有高区需求,还是建议往理论创新(比如新型架构)或跨领域应用方面深入探索,同时也需关注前沿技术,方便引用(比如VAE-LSTM)。我这边已经帮大家整理好了,开源代码已附,如果实在没思路,或者复现遇到困难,欢迎来交流。

2025-05-16 18:49:24 598

原创 2025年,多模态特征融合只会更火

从近期各大顶会的论文占比上就可以看出,这方向仍然是今年的发文热点,尤其在医学、自动驾驶等垂直领域。现在顶会对解决实际问题的创新方法接受度较高,而多模态特征融合能够,又得益于其通用性,在教育、娱乐、人机交互等多样化场景中都十分适用。因此这方向无论是创新性,还是发展前景都非常可观,论文er可冲。同时也建议各位结合Mamba等新兴模型与具体应用场景做创新。我这边整理了,可用作参考,需要的同学自取。全部论文+开源代码需要的同学看文末。

2025-05-15 19:53:46 1073

原创 PINN与KAN终于结合起来了!发SCI一区Top超简单的!

当前仍处于早期阶段,关于它的研究还在不断探索中。最近发现它有不少值得关注的成果,比如ESWA的自监督网格生成方法MeshKINN、CMAME的神经网络框架KAN-ODEs。这方向的优势在于既能够遵循物理规律,又能够结合领域知识,给我们提供更透明、更可靠的解释,在需要高可解释性的复杂任务中非常适用,因此是工业界的香饽饽,很适合相关领域有论文需求的同学研究。至于创新点,未来可能会往等方面突破,不过这方向代码实现的复杂度较高,建议大家结合具体应用场景做创新。如果需要参考,可直接拿我整理的,开源代码已附。

2025-05-14 17:58:18 735

原创 强化学习的大杀器!登上《Nature》正刊!

9年前AlphaGo杀穿围棋界,如今的Deepseek-R1引爆AI圈,强化学习的长久影响力有目共睹。作为当今AI领域最热门的词汇之一,2025年强化学习依然会是重点研究方向。在最近的RL研究成果中,《Nature》正刊上的Dreamer算法值得关注,它涉及到了未来不可忽视的方向:“通用强化学习”。如果是想要发RL相关论文的同学,强烈推荐研读。另外还有一些RL研究方向,比如当下正热门的RLHF、样本效率提升、多智能体强化学习等,创新多容易出成果。

2025-05-13 18:39:47 1218 1

原创 2025年,大模型LLM还有哪些可研究的方向?

近两年LLM在学术界与工业界的发展大家都有目共睹。到了今年,以预训练LLM为代表的大模型PK上半场已然结束,接下来就要进入下半场大模型2.0时代了。那么在这新赛道,关于大模型我们还有什么可做的创新?要知道,如今的大模型研究已经从单纯的"规模竞赛"转向"效能突破"与"应用重构",研究者们致力于构建可持续进化的智能生态系统。因此,多模态大模型、智能体agent等这类围绕大模型技术演进核心矛盾的方向尤其值得关注。

2025-05-13 14:02:15 607

原创 顶刊风向标!Attention+LSTM+特征融合制霸中科院一区!

Attention+LSTM+特征融合,时间序列预测的主流方法之一。这种结合的优势在于动态特征筛选与多源数据整合能力,特别适合处理复杂时序关系,在工业预测、金融股价预测等应用场景如鱼得水。这方向目前也是中科院一区常客,比如ESWA上的CIR-DFENet框架、Energy and AI上的DGL-STFA、EAAI上的GD-CAF 模型...我从中挑选了14篇Attention+LSTM+特征融合新论文,整理好了原文PDF和代码,方便需要参考的同学找idea。如果实在没思路,可以考虑往跨领域迁移、多模态融合

2025-05-08 17:39:37 1086

原创 “SAM+多模态图像融合”这个idea一出,就有人用它发了CCF-A!

SAM自推出以来,已经广泛应用于CV各任务,各种创新层出不穷。到了2025年,SAM仍然有相当大的优化空间,尤其是通过结合多模态图像融合,可以进一步提高分割精度和效率,增强适应性,大幅拓宽应用场景。对论文er来说,这也意味着创新空间更大了。目前在CVPR、IJCAI等顶会上已经出现了不少相关成果,比如性能超越SOTA的SAGE方法、鲁棒多模态3D目标检测框架RoboFusion。感兴趣的论文er抓紧时机!

2025-05-07 17:52:25 843

原创 CNN+Transformer+Mamba,多热点联合=不撞车+高分保证√

CNN的局部感知,加上Transformer的全局视野,再加上Mamba的高效建模,能产生怎样的火花?厦大图像修复模型RestorMixer给出了答案,它在多个图像恢复任务中都实现了SOTA性能。事实上,这类结合Mamba、CNN和Transformer的混合架构是当下深度学习领域的热门研究方向,不仅适合发论文,也能推动模型在效率与性能上的双重突破,在工业界应用前景相当广阔(比如腾讯混元T1)。

2025-05-06 18:10:28 772

原创 2025时间序列都有哪些创新点可做——总结篇

作为AI和数据科学的核心方向之一,在2025年依然保持着强劲的发展势头,稳站各大顶会顶刊投稿主题前列。关于它的研究,目前在结合传统统计方法和深度学习的基础上,已延伸至频域等数理工具与神经网络的交叉创新。同时针对垂直领域痛点的算法优化也成为重点突破方向。本文汇总了2025年时间序列一些可做的创新点,来自,分为算法融合、模型架构、算法优化、训练技巧、数据增强5个大方向,涵盖上述频域+时序、小波变换+时序等热门组合。全部论文+开源代码需要的同学看文末。

2025-04-25 18:00:35 1004 1

原创 SAM进化版开源!100倍推理加速!这思路简直杀疯了...

尽管SAM在处理大规模序列比对数据上难以替代,但它在速度、准确性、灵活性及功能扩展方面仍然有所欠缺。为了解决这些问题,研究者们,比如近期清华&英伟达推出的SAMEO框架,以及实现100倍的加速推理的TinySAM。另外还有很多成果已被顶会顶刊收录,简单看了点就有ICLR 2025上的MTSAM、SAMRefiner两篇,Nature Methods(中科院1区)的μSAM工具...可见现在有关SAM的研究有多热门。为了方便论文er快速了解前沿,这次我从中挑选了。

2025-04-23 17:44:35 578

原创 Mamba还能这么玩?新SOTA横扫14个图像修复任务,计算量降低150倍!

核心优势在于Mamba的长序列建模能力,可以替代Transformer,在高分辨率或复杂场景的实时修复等任务中优势显著。这意味着,Mamba+图像修复会在热门的医学图像、自动驾驶等领域发展迅猛,落地前景可观。再加上,近年主流顶会(比如CVPR)对SSM类模型接受度较高,比如横扫14个图像修复任务的MaIR、降低150倍计算复杂度的Serpent...非常适合有论文需求的同学研究。本文整理了,大多都开源了,想快速出成果的同学可以直接拿来做参考,同时也建议从等角度做创新,比较容易上手。

2025-04-22 17:55:46 864

原创 高分利器:Transformer+图像处理!创新性绝了,3位 IEEE Fellow推荐的含金量!

Transformer还能怎么做创新?西工大&台湾清华等3位 IEEE Fellow给出了思路:一种异构窗口 Transformer的图像处理方法,在去噪时间上仅占流行Restormer的30%。其实,近两年一直很活跃,因为Transformer核心的自注意力机制比CNN更能灵活处理目标检测、分割等CV任务,尤其是高效结构设计、跨模态应用和领域适配等。因此这个方向的研究多,顶会顶刊成果也不少,比如IEEE TIP的SENet、CVPR 2025的PFT模型...都值得研读。

2025-04-21 18:42:38 343

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除