找到了目标检测最好的发论文的idea!简单易上手!

有人说目标检测不好做了?可不见得,作为计算机视觉的核心任务之一,它在2025年仍将是研究热点,也依然会是我们“水”论文的好选择(doge)。

不过这方向如今确实卷,而且研究重心正从“精度竞争”转向“实际应用落地”和“解决长尾问题”。比如典型代表YOLO,创新主要围绕引入注意力机制、模型轻量化、与其他新技术结合、损失函数优化、数据增强等等,更注重模型的“实用性”。

至于更广泛的目标检测,目前的主流创新思路还是transformer-based、基于多层感知机、扩散模型,还有近期热门的大模型时代的目标检测等。如果想发论文,还是推荐以上这些细分方向,参考多资源也多,入门轻松。

本文整理了135篇目标检测前沿论文,可作参考,包含上述创新小方向,大家有需要自取。

全部论文+开源代码需要的同学看文末

YOLO与其他新技术结合

Integer-Valued Training and Spike-Driven Inference Spiking Neural Network for High-performance and Energy-efficient Object Detection

方法:论文提出了一种名为SpikeYOLO的新型脉冲神经网络架构,用于高性能和节能的对象检测。该方法将YOLO架构与SNN技术相结合,通过简化YOLO模块设计并引入元SNN块,同时设计了整数漏电积分发放神经元,以减少量化误差并保持低功耗。

创新点:

  • 设计了SpikeYOLO架构,简化YOLO模块并引入元SNN块,解决脉冲退化问题。

  • 提出I-LIF神经元,训练时用整数激活减少量化误差,推理时转为脉冲驱动保持低功耗。

  • 在COCO和Gen1数据集上,SpikeYOLO显著提升SNN性能和能效。

基于transformer的目标检测

TransRAD: Retentive Vision Transformer for Enhanced Radar Object Detection

方法:论文提出TransRAD模型,基于RMT进行雷达目标检测。该模型利用RMT的MaSA机制,引入空间先验以匹配雷达目标在RAD数据中的分布特征,实现精确的3D检测,并通过Location-Aware NMS技术解决重复边界框问题。

创新点:

  • 提出TransRAD模型,基于RMT,利用其MaSA机制引入空间先验,匹配雷达目标在RAD数据中的分布特征。

  • 设计Location-Aware NMS技术,专门解决深度雷达目标检测中不同类别边界框重叠的问题。

  • 实验证明,TransRAD在2D和3D雷达检测任务中表现优异,精度更高、推理速度更快,计算复杂度更低。

大模型时代下的目标检测

Training-Free Open-Ended Object Detection and Segmentation via Attention as Prompts

方法:论文提出VL-SAM框架,结合视觉-语言模型(VLM)和SAM模型,通过注意力图作为提示,无需额外训练即可实现开放性目标检测和分割。VL-SAM利用VLM生成高质量注意力图,采样正负点提示SAM进行分割,有效处理未知目标。

创新点:

  • 提出VL-SAM框架,结合VLM和SAM,无需额外训练实现开放性目标检测和分割。

  • 设计注意力图生成模块,通过头聚合和正则化注意力流聚合高质量注意力图。

  • 提出迭代细化流程,通过正负点采样策略优化分割结果。

基于扩散模型的目标检测

V2X-R: Cooperative LiDAR-4D Radar Fusion with Denoising Diffusion for 3D Object Detection

方法:论文提出了一种基于扩散模型的多模态去噪模块(MDD),用于提升恶劣天气下3D目标检测的性能。通过融合LiDAR和4D雷达数据,MDD模块利用4D雷达的天气鲁棒性特征去除LiDAR噪声,显著提高了检测性能。

创新点:

  • 提出V2X-R数据集,包含LiDAR、摄像头和4D雷达模态,为恶劣天气下3D目标检测研究提供数据基础。

  • 设计多模态去噪扩散(MDD)模块,利用4D雷达的天气鲁棒性特征去除LiDAR噪声,提升恶劣天气下的检测性能。

  • 构建协同LiDAR-4D雷达融合流程,通过多种融合策略实现3D目标检测,并在V2X-R数据集上建立基准。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“222”获取全部方案+开源代码

码字不易,欢迎大家点赞评论收藏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值