频域+时间序列,一行代码稳定提升预测精度!

以往传统时域建模一直占据主导,但如今频域研究异军突起,与时间序列结合,能挖掘出更丰富信息,显著提升模型性能与预测精度。因此,频域+时间序列逐渐成为学术焦点,在金融风控、医疗信号分析、工业预测等领域都实现了突破性应用!

比如最近ICLR 2025上的FreDF,只需加入一行代码,就能在主流模型上实现预测精度的稳定提升!还有一区TOP上的TFDNet,在多个基准数据集上均超越SOTA!显然这方向已经成为了顶会顶刊常客。

目前如把时域方法迁移至频域、融合时频信息构建更优模型等,都是这方向比较推荐的创新思路,有论文需求的同学可考虑。本文整理了10篇频域+时间序列前沿论文(有代码),方便需要参考的同学研读。

全部论文+开源代码需要的同学看文末

FreDF: Learning to Forecast in the Frequency Domain

方法:论文提出了一种名为FreDF的方法,通过在频域中进行预测来减轻标签自相关性对预测结果的影响。具体来说,FreDF将时间序列数据转换到频域,利用频域中的特性来减少标签之间的自相关性,从而降低预测偏差。

创新点:

  • 提出FreDF方法,将时间序列预测任务从时间域转移到频域,有效减轻了时间序列中标签自相关性对预测结果的影响。

  • FreDF方法与多种预测模型兼容,通过在频域中进行预测,显著提高了模型的预测性能。

  • 在多个数据集上验证了FreDF方法的有效性,证明了其在减少预测偏差和提高预测准确性方面的优势。

TFDNet: Time-Frequency Enhanced Decomposed Network for Long-term Time Series Forecasting

方法:论文提出TFDNet模型,用短时傅里叶变换把时间序列转成时间-频率矩阵,再用多尺度编码器分别处理趋势和季节性成分,针对不同数据集的通道相关性设计了个体核和多核共享策略,效果好且效率高。

创新点:

  • 提出TFDNet模型,用短时傅里叶变换把时间序列转成时间-频率矩阵,同时捕捉时间和频率信息。

  • 根据不同数据集的通道相关性,设计个体核策略和多核共享策略,分别处理趋势和季节性成分。

  • 在多个数据集上验证,TFDNet效果和效率都优于现有方法。

FredNormer: Frequency Domain Normalization for Non-stationary Time Series Forecasting

方法:论文提出了一种名为FredNormer的方法,用于处理非平稳时间序列预测中的分布偏移问题。该方法从频域角度出发,通过分析时间序列数据的频率稳定性,自适应地增强关键频率成分的权重。

创新点:

  • 提出FredNormer,从频域视角分析时间序列,自适应增强关键频率成分权重。

  • 设计统计度量和可学习加权层,归一化输入样本并调整稳定性。

  • 实验证明FredNormer在多个数据集上显著提升预测模型性能,尤其在复杂频率特征数据集上效果显著。

Enhancing Multivariate Time-Series Domain Adaptation via Contrastive Frequency Graph Discovery and Language-Guided Adversary Alignment

方法:本文提出了一种名为ConFGD的方法,通过频域分析和时间序列特征提取,对齐源域和目标域的频率信息,同时利用对比学习框架进一步对齐频率上下文表示,增强预测能力。此外,还引入语言模型生成的文本嵌入对齐分类特征,进一步提升预测精度。

创新点:

  • 提出频率图发现模块(FGD),通过离散小波变换(DWT)分解时间序列,捕捉并对齐源域和目标域的频率信息。

  • 引入频率上下文对比学习(FCCL)框架,进一步对齐频率上下文表示,提取标签不变信息。

  • 设计语言引导的对抗对齐模块(LAA),利用大型语言模型的文本嵌入对齐分类特征,提升预测精度。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“222”获取全部方案+开源代码

码字不易,欢迎大家点赞评论收藏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值