以往传统时域建模一直占据主导,但如今频域研究异军突起,与时间序列结合,能挖掘出更丰富信息,显著提升模型性能与预测精度。因此,频域+时间序列逐渐成为学术焦点,在金融风控、医疗信号分析、工业预测等领域都实现了突破性应用!
比如最近ICLR 2025上的FreDF,只需加入一行代码,就能在主流模型上实现预测精度的稳定提升!还有一区TOP上的TFDNet,在多个基准数据集上均超越SOTA!显然这方向已经成为了顶会顶刊常客。
目前如把时域方法迁移至频域、融合时频信息构建更优模型等,都是这方向比较推荐的创新思路,有论文需求的同学可考虑。本文整理了10篇频域+时间序列前沿论文(有代码),方便需要参考的同学研读。
全部论文+开源代码需要的同学看文末
FreDF: Learning to Forecast in the Frequency Domain
方法:论文提出了一种名为FreDF的方法,通过在频域中进行预测来减轻标签自相关性对预测结果的影响。具体来说,FreDF将时间序列数据转换到频域,利用频域中的特性来减少标签之间的自相关性,从而降低预测偏差。
创新点:
-
提出FreDF方法,将时间序列预测任务从时间域转移到频域,有效减轻了时间序列中标签自相关性对预测结果的影响。
-
FreDF方法与多种预测模型兼容,通过在频域中进行预测,显著提高了模型的预测性能。
-
在多个数据集上验证了FreDF方法的有效性,证明了其在减少预测偏差和提高预测准确性方面的优势。
TFDNet: Time-Frequency Enhanced Decomposed Network for Long-term Time Series Forecasting
方法:论文提出TFDNet模型,用短时傅里叶变换把时间序列转成时间-频率矩阵,再用多尺度编码器分别处理趋势和季节性成分,针对不同数据集的通道相关性设计了个体核和多核共享策略,效果好且效率高。
创新点:
-
提出TFDNet模型,用短时傅里叶变换把时间序列转成时间-频率矩阵,同时捕捉时间和频率信息。
-
根据不同数据集的通道相关性,设计个体核策略和多核共享策略,分别处理趋势和季节性成分。
-
在多个数据集上验证,TFDNet效果和效率都优于现有方法。
FredNormer: Frequency Domain Normalization for Non-stationary Time Series Forecasting
方法:论文提出了一种名为FredNormer的方法,用于处理非平稳时间序列预测中的分布偏移问题。该方法从频域角度出发,通过分析时间序列数据的频率稳定性,自适应地增强关键频率成分的权重。
创新点:
-
提出FredNormer,从频域视角分析时间序列,自适应增强关键频率成分权重。
-
设计统计度量和可学习加权层,归一化输入样本并调整稳定性。
-
实验证明FredNormer在多个数据集上显著提升预测模型性能,尤其在复杂频率特征数据集上效果显著。
Enhancing Multivariate Time-Series Domain Adaptation via Contrastive Frequency Graph Discovery and Language-Guided Adversary Alignment
方法:本文提出了一种名为ConFGD的方法,通过频域分析和时间序列特征提取,对齐源域和目标域的频率信息,同时利用对比学习框架进一步对齐频率上下文表示,增强预测能力。此外,还引入语言模型生成的文本嵌入对齐分类特征,进一步提升预测精度。
创新点:
-
提出频率图发现模块(FGD),通过离散小波变换(DWT)分解时间序列,捕捉并对齐源域和目标域的频率信息。
-
引入频率上下文对比学习(FCCL)框架,进一步对齐频率上下文表示,提取标签不变信息。
-
设计语言引导的对抗对齐模块(LAA),利用大型语言模型的文本嵌入对齐分类特征,提升预测精度。
关注下方《学姐带你玩AI》🚀🚀🚀
回复“222”获取全部方案+开源代码
码字不易,欢迎大家点赞评论收藏