实现retry功能(pythonic,装饰器版)

本文介绍在Python中实现重试机制的三种方法,包括通过读写文件控制重试次数的脚本方式,以及使用装饰器简化代码并提升效率的Pythonic方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# pip install的时候经常能看到retry,于是想自己实现retry功能。更符合Python语言风格的是装饰器版。
# 脚本中还可加入重试时间间隔。

# 方法一 用脚本运行自身脚本
# 触发某个条件重新运行该文件即可。控制器需要通过文件或者数据库来限制。
# 不可以在脚本里写触发器,因为会无限递归(即使自己限制了最大递归层数也不可)


import os


def retry1(try_times):
    try:
        1/0
    except:
        file = ''
        config = open(file).read()  # 这里通过读取文件的方式获取重试的次数。demo版
        times = int('......')  # demo版
        times += 1
        if times < try_times:
            with open(file, mode='w', encoding='utf-8') as f:
                f.write(str(times))  # 把更新后的重试次数写入文件
            print("报错,再次运行, 第 {}次".format(times - 1))
            os.system(f"python {__file__}")


# 方法二 装饰器版
from functools import wraps


def pythonic_retry(times=3):
    time_dic = {}

    def controller(status, func, *args, **kwargs):
        already_try_time = time_dic.get("already_try_time", 1)
        if status:
            print("程序运行完成")
        elif not status and already_try_time <= times:
            print(f"第{already_try_time}次运行错误")
            time_dic["already_try_time"] = already_try_time + 1
            status = func(*args, **kwargs)
            return controller(status, func, *args, **kwargs)
        else:
            print("已达到最大重试次数,程序终止")
        return

    def outer(func):
        @wraps(func)
        def inner(*args, **kwargs):
            status = func(*args, **kwargs)
            return controller(status, func, *args, **kwargs)
        return inner
    return outer


@pythonic_retry()
def zero_division():
    try:
        1 / 0
        # 1 / 1
        return True
    except:
        # print("出现错误")
        return

# 方法三 装饰器版 与方法二核心思路一致,但是巧妙应用了return,不需要额外再构造一个控制器。
from functools import wraps


def pythonic_retry2(times=3):
    def outer(func):
        @wraps(func)
        def inner(*args, **kwargs):
            for i in range(times):
                try:
                    status = func(*args, **kwargs)
                except Exception:
                    print(f"正在重试第{i+1}次")
                    pass
                else:
                    print(111)
                    return status
        return inner
    return outer


@pythonic_retry2()
def zero_division2():
    1 / 0


if __name__ == '__main__':
    zero_division()
    print("======分隔符======")
    zero_division2()

在这里插入图片描述

### 减少或优化 yfinance 请求频率的方法 #### 使用缓存机制 为了降低请求频率并提高效率,可以引入缓存机制。通过安装带有缓存支持的 `yfinance` 本,能够有效减少不必要的重复请求: ```bash pip install "yfinance[nospam]" ``` 这将帮助存储已获取的数据,在后续查询相同数据时不需再次发起网络请求[^1]。 #### 控制请求速率 为了避免因请求过于频繁而触发 Yahoo Finance 的限流措施,建议采用分批请求的方式,并设置合理的等待时间间隔。可以通过 Pythonic 接口实现这一目标,例如使用 `time.sleep()` 方法来控制两次连续请求之间的时间差: ```python import time import yfinance as yf tickers = ['AAPL', 'GOOGL', 'MSFT'] for ticker in tickers: stock_data = yf.download(ticker, period='1d') process_stock_data(stock_data) time.sleep(2) # Wait for 2 seconds before next request ``` 这种方式不仅有助于防止被服务器限制访问,还能减轻本地系统的负载压力[^2]。 #### 错误处理与重试策略 当遇到临时性的网络问题或其他异常情况时,良好的错误处理机制至关重要。可以在代码中加入异常捕获逻辑,确保程序不会因为单次失败就完全停止运行;同时配合一定的自动重试次数设定,进一步提升稳定性: ```python from requests.exceptions import RequestException def fetch_with_retry(url, retries=3): attempt = 0 while attempt < retries: try: response = requests.get(url) return response.json() except RequestException as e: print(f'Error occurred: {e}, retrying...') attempt += 1 time.sleep(attempt * 2) # Exponential backoff strategy raise Exception("Max retries exceeded") data = fetch_with_retry('https://query1.finance.yahoo.com/v7/finance/download/AAPL?period1=...&interval=1d') ``` 上述方法综合运用了多种技术手段,旨在最大限度地保障数据抓取过程中的高效性和可靠性[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一枚NPC

你的鼓励将是我创作的最大动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值