python数据挖掘笔记——回归(2):多重线性回归

本文介绍了多重线性回归的概念,它是研究因变量与多个自变量间线性关系的方法。文中详细阐述了回归分析步骤,包括确定变量、模型检验、调整判定系数计算,并通过案例展示了如何运用多重线性回归预测新店面的月营业额。同时,文章总结了相关API的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多重线性回归(Multiple Linear Regression):

研究一个因变量与多个自变量之间的线性关系的方法。

在这里插入图片描述
一元线性回归是特殊的多重线性回归,多重线性回归分析步骤和一元线性回归一样:
回归分析的步骤:

  1. 根据预测目标,确定自变量和因变量。
  2. 绘制散点图,确定回归模型类型。
  3. 估计模型参数,建立回归模型。
  4. 对回归模型进行检验。
    回归方程的精度就是用来表示实际观测点和回归方程的拟合程度的指标,用调整判定系数来度量。
    调整判定系数=ESS/TSS=1-(RSS/TSS)*(n-1/n-k-1)
    其中:TSS:总离差平方和
    ESS:回归平方和
    RSS:残差平方和
    n:样本个数
    k:自变量个数
  5. 利用回归模型进行预测。

案例:现有10家已开店并营业的商店,有店铺面积、最近车站的距离及月营业额,现有一家新的店面,要求预测月营业额是多少
下面是分析过程:
第一步,根据预测目标,确定自变量和因变量。
因变量:月营业额
自变量:店铺面积、最近车站的距离。
代码演示:

import pandas;
import matplotlib;
from pandas.tools.plotting import scatter_matrix;
#导入数据
data = pandas.read_csv(
    r'C:\Users\www12\Desktop\DA\pythonDM\4.2\data.csv'
)

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值