python实现AI抠图

python实现人工智能抠图

自己是个PS小白,没办法只能通过技术来证明自己。
话不多说,直接上代码

from removebg import RemoveBg
import requests
import os
if __name__ == '__main__':
    path = '%s\picture'%os.getcwd()
    ispath = os.path.exists(path)
    if not ispath:
        os.mkdir(path)
    response = requests.post(
        'https://api.remove.bg/v1.0/removebg',
        files={'image_file': open(path+'/juqiamyi.jpg', 'rb')},
        # data={'size': 'auto','bg_color':'FFB6C1'},
        data={'size': 'auto'},
        headers={'X-Api-Key': '****YOU API KEY****'},
    )
    if response.status_code == requests.codes.ok:
        with open(path+'/juqiamyi.png', 'wb') as out:
            out.write(response.content)
    else:
        print("Error:", response.status_code, response.text)

说明一下,主要是调用第三方的api,申请一个账户会得到一个KEY,每个账户没一个月有50次免费试用次数。.

在这里插入图片描述

抠过图后:

在这里插入图片描述

### 使用Python实现AI图像分割抠图 对于利用Python进行AI图像分割抠图的任务,可以采用多种方法和技术栈。一种流行的方式是借助PaddlePaddle生态下的`paddlehub`模块完成高效便捷的一键抠图操作[^1]。 #### PaddleHub一键抠图示例 ```python import paddlehub as hub seg = hub.Module(name='ace2p') path = './image/baozi.jpg' result = seg.segmentation( paths=[path], visualization=True, output_dir="./output" ) ``` 上述代码展示了基于预训练模型`ace2p`执行图像分割的过程,并将处理后的图片保存至指定文件夹内。此过程不仅简单易懂而且能够获得较为理想的分割效果。 另一种方案则是通过调用开源目标检测框架MMDetection来进行更精细控制的抠图工作[^2]。该方式允许开发者自定义更多参数以及针对特定需求调整算法逻辑。 #### MMDetection抠图去背景案例 ```python from copy import deepcopy import cv2 img_segmentation = deepcopy(img_raw) # 深拷贝原始numpy数组对象 img_segmentation_data = coco_80_dict['bench']['segmentation'][0] for h_i in range(img_h): for w_i in range(img_w): if not img_segmentation_data[h_i, w_i]: img_segmentation[h_i, w_i] = [255, 255, 255] cv2.imwrite('demo_result_segmentation.jpg', img_segmentation) ``` 除了以上提到的技术外,还有其他成熟的解决方案可供选择,比如OpenCV提供的GrabCut算法用于证件照快速抠图更换背景的应用场景[^3];另外也有专门面向商业应用开发者的在线服务API接口,这些工具和服务极大地简化了实际项目中的复杂度并提高了效率[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值