sklearn中决策树的绘制 不用graphviz库

本文介绍了如何使用sklearn库中的决策树分类器进行数据分类。通过加载鸢尾花数据集并将其分为特征X和目标y,然后创建并训练决策树分类器。最后,使用plot_tree函数可视化决策树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from sklearn.datasets import load_iris
from sklearn import tree
X, y = load_iris(return_X_y=True)
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, y)
tree.plot_tree(feature_names=feature_names
, class_names=[‘a’, ‘b’, ‘c’]
, filled=True
, rounded=True) # class_names不显示中文
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值